Computing the effective action with the functional renormalization group

被引:39
|
作者
Codello, Alessandro [1 ,2 ]
Percacci, Roberto [3 ,4 ]
Rachwal, Leslaw [5 ]
Tonero, Alberto [6 ,7 ]
机构
[1] Univ Southern Denmark, Origins CP3, Campusvej 55, DK-5230 Odense, Denmark
[2] Univ Southern Denmark, Danish IAS, Campusvej 55, DK-5230 Odense, Denmark
[3] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[4] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
[5] Fudan Univ, Dept Phys, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R China
[6] ICTP SAIFR, Rua Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, Brazil
[7] IFT, Rua Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, Brazil
来源
EUROPEAN PHYSICAL JOURNAL C | 2016年 / 76卷 / 04期
基金
巴西圣保罗研究基金会; 新加坡国家研究基金会;
关键词
BACKGROUND FIELD METHOD; LOOP EFFECTIVE ACTION; INFRARED BEHAVIOR; PERTURBATION-THEORY;
D O I
10.1140/epjc/s10052-016-4063-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The "exact" or "functional" renormalization group equation describes the renormalization group flow of the effective average action Gamma(k). The ordinary effective action Gamma(0) can be obtained by integrating the flow equation from an ultraviolet scale k = Lambda downto k = 0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang-Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] One-Loop Effective Action: Nonlocal Form Factors and Renormalization Group
    Poliane de Morais Teixeira
    Ilya L. Shapiro
    Tiago G. Ribeiro
    Gravitation and Cosmology, 2020, 26 : 185 - 199
  • [32] Cluster functional renormalization group
    Reuther, Johannes
    Thomale, Ronny
    PHYSICAL REVIEW B, 2014, 89 (02):
  • [33] Renormalized functional renormalization group
    Lippoldt, Stefan
    PHYSICS LETTERS B, 2018, 782 : 275 - 279
  • [34] Renormalization group functional equations
    Curtright, Thomas L.
    Zachos, Cosmas K.
    PHYSICAL REVIEW D, 2011, 83 (06):
  • [35] Harmonic expansion of the effective potential in a functional renormalization group at finite chemical potential
    Barnafoldi, G. G.
    Jakovac, A.
    Posfay, P.
    PHYSICAL REVIEW D, 2017, 95 (02)
  • [36] Renormalization group flow equations connected to the n-particle-irreducible effective action
    Carrington, M. E.
    PHYSICAL REVIEW D, 2013, 87 (04):
  • [37] THE EFFECTIVE POTENTIAL AND THE RENORMALIZATION-GROUP
    FORD, C
    JONES, DRT
    STEPHENSON, PW
    EINHORN, MB
    NUCLEAR PHYSICS B, 1993, 395 (1-2) : 17 - 34
  • [38] Renormalization-group flow of the effective action of cosmological large-scale structures
    Floerchinger, Stefan
    Garny, Mathias
    Tetradis, Nikolaos
    Wiedemann, Urs Achim
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (01):
  • [39] Renormalization Group Approach to Effective Hamiltonians
    Fields, T. J.
    Gupta, K. S.
    Vary, J. P.
    Modern Physics Letter A, 11 (27):
  • [40] Renormalization group approach to effective Hamiltonians
    Fields, TJ
    Vary, JP
    Gupta, KS
    MODERN PHYSICS LETTERS A, 1996, 11 (27) : 2233 - 2240