Renormalization group functional equations

被引:14
|
作者
Curtright, Thomas L. [1 ,2 ]
Zachos, Cosmas K. [3 ]
机构
[1] CERN, CH-1211 Geneva 23, Switzerland
[2] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA
[3] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 06期
基金
美国国家科学基金会;
关键词
BEHAVIOR;
D O I
10.1103/PhysRevD.83.065019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories and to gain insight into the interplay between continuous and discrete rescaling. With minimal assumptions, the methods produce continuous flows from step-scaling sigma functions and lead to exact functional relations for the local flow beta functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of sigma are sometimes not true fixed points under continuous changes in scale and zeroes of beta do not necessarily signal fixed points of the flow but instead may only indicate turning points of the trajectories.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Analytic continuation of functional renormalization group equations
    Stefan Floerchinger
    Journal of High Energy Physics, 2012
  • [2] Analytic continuation of functional renormalization group equations
    Floerchinger, Stefan
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):
  • [3] Eliashberg equations derived from the functional renormalization group
    Honerkamp, C
    Salmhofer, M
    PROGRESS OF THEORETICAL PHYSICS, 2005, 113 (06): : 1145 - 1158
  • [4] On Functional Hamilton-Jacobi and Schrodinger Equations and Functional Renormalization Group
    Ivanov, Mikhail G.
    Kalugin, Alexey E.
    Ogarkova, Anna A.
    Ogarkov, Stanislav L.
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 34
  • [5] FlowPy-A numerical solver for functional renormalization group equations
    Fischbacher, Thomas
    Synatschke-Czerwonka, Franziska
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (08) : 1931 - 1945
  • [6] Algorithmic derivation of functional renormalization group equations and Dyson-Schwinger equations
    Huber, Markus Q.
    Braun, Jens
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (06) : 1290 - 1320
  • [7] RENORMALIZATION GROUP EQUATIONS IN DIFFERENT RENORMALIZATION SCHEMES
    VLADIMIROV, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 25 (03) : 1170 - 1175
  • [8] Functional matching and renormalization group equations at two-loop order
    Fuentes-Martin, Javier
    Palavric, Ajdin
    Thomsen, Anders Eller
    PHYSICS LETTERS B, 2024, 851
  • [9] The renormalization group equations revisited
    Mathiot, Jean-Francois
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (26):
  • [10] Symmetries of the Renormalization Group Equations
    Juarez, S. R. W.
    Kielanowski, P.
    Vazquez, L. M.
    QUANTUM FEST 2019 INTERNATIONAL CONFERENCE ON QUANTUM PHENOMENA, QUANTUM CONTROL AND QUANTUM OPTICS, 2020, 1540