Renormalization group functional equations

被引:14
|
作者
Curtright, Thomas L. [1 ,2 ]
Zachos, Cosmas K. [3 ]
机构
[1] CERN, CH-1211 Geneva 23, Switzerland
[2] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA
[3] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 06期
基金
美国国家科学基金会;
关键词
BEHAVIOR;
D O I
10.1103/PhysRevD.83.065019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories and to gain insight into the interplay between continuous and discrete rescaling. With minimal assumptions, the methods produce continuous flows from step-scaling sigma functions and lead to exact functional relations for the local flow beta functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of sigma are sometimes not true fixed points under continuous changes in scale and zeroes of beta do not necessarily signal fixed points of the flow but instead may only indicate turning points of the trajectories.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] ANOMALOUS DIMENSIONS AND RENORMALIZATION GROUP EQUATIONS
    SHIZUYA, KI
    NUCLEAR PHYSICS B, 1974, B 73 (02) : 339 - 350
  • [22] SYMMETRIES OF THE RENORMALIZATION-GROUP EQUATIONS
    JHA, PK
    TRIPATHY, KC
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (08) : 2675 - 2681
  • [23] Renormalization group equations for the CKM matrix
    Kielanowski, P.
    Juarez W., S. R.
    Montes de Oca Y., J. H.
    PHYSICAL REVIEW D, 2008, 78 (11):
  • [24] Renormalization group equations as 'decoupling' theorems
    Yang, JF
    PHYSICS LETTERS B, 2005, 625 (3-4) : 357 - 364
  • [25] DISPERSION APPROACH TO RENORMALIZATION GROUP EQUATIONS
    NISHIJIMA, K
    PROGRESS OF THEORETICAL PHYSICS, 1974, 51 (04): : 1193 - 1205
  • [26] GENERALIZED DIMENSIONS OF FEIGENBAUM'S ATTRACTOR FROM RENORMALIZATION-GROUP FUNCTIONAL EQUATIONS
    Kuznetsov, S. P.
    Osbaldestin, A. H.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (03): : 325 - 330
  • [27] Cosmological functional renormalization group, extended Galilean invariance, and approximate solutions to the flow equations
    Erschfeld, Alaric
    Floerchinger, Stefan
    PHYSICAL REVIEW D, 2022, 105 (02)
  • [28] Functional renormalization group for stochastic inflation
    Prokopec, Tomislav
    Rigopoulos, Gerasimos
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (08):
  • [29] Functional renormalization group in a finite volume
    Fister, Leonard
    Pawlowski, Jan M.
    PHYSICAL REVIEW D, 2015, 92 (07):
  • [30] Critical phenomena and functional renormalization group
    Yin S.
    Tan Y.
    Fu W.
    He Jishu/Nuclear Techniques, 2023, 46 (04):