Renormalization group functional equations

被引:14
|
作者
Curtright, Thomas L. [1 ,2 ]
Zachos, Cosmas K. [3 ]
机构
[1] CERN, CH-1211 Geneva 23, Switzerland
[2] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA
[3] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 06期
基金
美国国家科学基金会;
关键词
BEHAVIOR;
D O I
10.1103/PhysRevD.83.065019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories and to gain insight into the interplay between continuous and discrete rescaling. With minimal assumptions, the methods produce continuous flows from step-scaling sigma functions and lead to exact functional relations for the local flow beta functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of sigma are sometimes not true fixed points under continuous changes in scale and zeroes of beta do not necessarily signal fixed points of the flow but instead may only indicate turning points of the trajectories.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Ultracold atoms and the Functional Renormalization Group
    Boettcher, Igor
    Pawlowski, Jan M.
    Diehl, Sebastian
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2012, 228 : 63 - 135
  • [32] Functional renormalization group in Floquet space
    Eissing, Anna Katharina
    Meden, Volker
    Kennes, Dante Marvin
    PHYSICAL REVIEW B, 2016, 94 (24)
  • [33] Bound states in functional renormalization group
    Jakovac, Antal
    Patkos, Andras
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (27):
  • [34] Gauge symmetry and the functional renormalization group
    Itoh, Katsumi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (35):
  • [35] Deep Learning the Functional Renormalization Group
    Di Sante, Domenico
    Medvidovi, Matija
    Toschi, Alessandro
    Sangiovanni, Giorgio
    Franchini, Cesare
    Sengupta, Anirvan M.
    Millis, Andrew J.
    PHYSICAL REVIEW LETTERS, 2022, 129 (13)
  • [36] Functional renormalization group and quantum tunnelling
    Weyrauch, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (03): : 649 - 666
  • [37] Lectures on the functional renormalization group method
    Polonyi, J
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2003, 1 (01): : 1 - 71
  • [38] Introduction to the nonequilibrium functional renormalization group
    Berges, J.
    Mesterhazy, D.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2012, 228 : 37 - 60
  • [39] Properties of the linearized functional renormalization group
    Morris, Tim R.
    PHYSICAL REVIEW D, 2022, 105 (10)