Optimal resilience of modular interacting networks

被引:72
|
作者
Dong, Gaogao [1 ,2 ,3 ]
Wang, Fan [1 ,4 ]
Shekhtman, Louis M. [5 ]
Danziger, Michael M. [5 ]
Fan, Jingfang [6 ,7 ]
Du, Ruijin [1 ,8 ]
Liu, Jianguo [9 ,10 ]
Tian, Lixin [11 ]
Stanley, H. Eugene [2 ,3 ]
Havlin, Shlomo [4 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[5] Northeastern Univ, Network Sci Inst, Ctr Complex Network Res, Boston, MA 02115 USA
[6] Beijing Normal Univ, Sch Syst Sci, Beijing 100875, Peoples R China
[7] Potsdam Inst Climate Impact Res, Earth Syst Anal, D-14412 Potsdam, Germany
[8] Jiangsu Univ, Energy Dev & Environm Protect Strategy Res Ctr, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[9] Shanghai Univ Finance & Econ, Inst Accounting & Finance, Shanghai 200443, Peoples R China
[10] Xinjiang Univ Finance & Econ, Sch Publ Management, Urumqi 830012, Peoples R China
[11] Nanjing Normal Univ, Sch Math Sci, Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 国家重点研发计划; 以色列科学基金会;
关键词
interacting network; resilience; percolation; optimal phenomenon; COMPLEX NETWORKS; MERGERS; DETERMINANTS;
D O I
10.1073/pnas.1922831118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coupling between networks is widely prevalent in real systems and has dramatic effects on their resilience and functional properties. However, current theoretical models tend to assume homogeneous coupling where all the various subcomponents interact with one another, whereas real-world systems tend to have various different coupling patterns. We develop two frameworks to explore the resilience of such modular networks, including specific deterministic coupling patterns and coupling patterns where specific subnetworks are connected randomly. We find both analytically and numerically that the location of the percolation phase transition varies nonmonotonically with the fraction of interconnected nodes when the total number of interconnecting links remains fixed. Furthermore, there exists an optimal fraction r* of interconnected nodes where the system becomes optimally resilient and is able to withstand more damage. Our results suggest that, although the exact location of the optimal r* varies based on the coupling patterns, for all coupling patterns, there exists such an optimal point. Our findings provide a deeper understanding of network resilience and show how networks can be optimized based on their specific coupling patterns.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Modular Neural Networks
    Matera, F
    SUBSTANCE USE & MISUSE, 1998, 33 (02) : 307 - 315
  • [32] Centrality in modular networks
    Zakariya Ghalmane
    Mohammed El Hassouni
    Chantal Cherifi
    Hocine Cherifi
    EPJ Data Science, 8
  • [33] Organization of modular networks
    Dorogovtsev, S. N.
    Mendes, J. F. F.
    Samukhin, A. N.
    Zyuzin, A. Y.
    PHYSICAL REVIEW E, 2008, 78 (05)
  • [34] Optimal quotients of modular Jacobians
    Emerton, M
    MATHEMATISCHE ANNALEN, 2003, 327 (03) : 429 - 458
  • [35] Optimal quotients of modular Jacobians
    Matthew Emerton
    Mathematische Annalen, 2003, 327 : 429 - 458
  • [36] RESILIENCE OF INFRASTRUCTURE NETWORKS
    Brabhaharan, Pathmanathan
    Wotherspoon, Liam M.
    Dhakal, Rajesh P.
    BULLETIN OF THE NEW ZEALAND SOCIETY FOR EARTHQUAKE ENGINEERING, 2021, 54 (02): : I - III
  • [37] Optimal robust allocation of distributed modular energy storage system in distribution networks for voltage regulation
    Xu, Zirong
    Tang, Zhiyuan
    Chen, Yongdong
    Liu, Youbo
    Gao, Hongjun
    Xu, Xiao
    APPLIED ENERGY, 2025, 388
  • [38] On the Resilience of Bipartite Networks
    Heinecke, Shelby
    Perkins, Will
    Reyzin, Lev
    2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 72 - 77
  • [39] Resilience of airborne networks
    Ahmadi, Hamed
    Fontanesi, Gianluca
    Katzis, Konstantinos
    Shakir, Muhammad Zeeshan
    Zhu, Anding
    2018 IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2018, : 1155 - 1156
  • [40] RESILIENCE IN CRIMINAL NETWORKS
    Catanese, Salvatore
    De Meo, Pasquale
    Fiumara, Giacomo
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2016, 94 (02):