Optimal resilience of modular interacting networks

被引:72
|
作者
Dong, Gaogao [1 ,2 ,3 ]
Wang, Fan [1 ,4 ]
Shekhtman, Louis M. [5 ]
Danziger, Michael M. [5 ]
Fan, Jingfang [6 ,7 ]
Du, Ruijin [1 ,8 ]
Liu, Jianguo [9 ,10 ]
Tian, Lixin [11 ]
Stanley, H. Eugene [2 ,3 ]
Havlin, Shlomo [4 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[5] Northeastern Univ, Network Sci Inst, Ctr Complex Network Res, Boston, MA 02115 USA
[6] Beijing Normal Univ, Sch Syst Sci, Beijing 100875, Peoples R China
[7] Potsdam Inst Climate Impact Res, Earth Syst Anal, D-14412 Potsdam, Germany
[8] Jiangsu Univ, Energy Dev & Environm Protect Strategy Res Ctr, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[9] Shanghai Univ Finance & Econ, Inst Accounting & Finance, Shanghai 200443, Peoples R China
[10] Xinjiang Univ Finance & Econ, Sch Publ Management, Urumqi 830012, Peoples R China
[11] Nanjing Normal Univ, Sch Math Sci, Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 国家重点研发计划; 以色列科学基金会;
关键词
interacting network; resilience; percolation; optimal phenomenon; COMPLEX NETWORKS; MERGERS; DETERMINANTS;
D O I
10.1073/pnas.1922831118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Coupling between networks is widely prevalent in real systems and has dramatic effects on their resilience and functional properties. However, current theoretical models tend to assume homogeneous coupling where all the various subcomponents interact with one another, whereas real-world systems tend to have various different coupling patterns. We develop two frameworks to explore the resilience of such modular networks, including specific deterministic coupling patterns and coupling patterns where specific subnetworks are connected randomly. We find both analytically and numerically that the location of the percolation phase transition varies nonmonotonically with the fraction of interconnected nodes when the total number of interconnecting links remains fixed. Furthermore, there exists an optimal fraction r* of interconnected nodes where the system becomes optimally resilient and is able to withstand more damage. Our results suggest that, although the exact location of the optimal r* varies based on the coupling patterns, for all coupling patterns, there exists such an optimal point. Our findings provide a deeper understanding of network resilience and show how networks can be optimized based on their specific coupling patterns.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Interacting neural networks
    Metzler, R.
    Kinzel, W.
    Kanter, I.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 B): : 2555 - 2565
  • [22] Queues on interacting networks
    Vlasiou, Maria
    QUEUEING SYSTEMS, 2022, 100 (3-4) : 553 - 555
  • [23] Interacting with sensor networks
    Peterson, R
    Rus, D
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 180 - 186
  • [24] Queues on interacting networks
    Maria Vlasiou
    Queueing Systems, 2022, 100 : 553 - 555
  • [25] Interacting neural networks
    Metzler, R
    Kinzel, W
    Kanter, I
    PHYSICAL REVIEW E, 2000, 62 (02): : 2555 - 2565
  • [26] Modular and hierarchically modular organization of brain networks
    Meunier, David
    Lambiotte, Renaud
    Bullmore, Edward T.
    FRONTIERS IN NEUROSCIENCE, 2010, 4
  • [27] ON THE OPTIMAL EXPLOITATION OF INTERACTING RESOURCES
    SEMMLER, W
    SIEVEKING, M
    JOURNAL OF ECONOMICS-ZEITSCHRIFT FUR NATIONALOKONOMIE, 1994, 59 (01): : 23 - 49
  • [28] A modular analysis for the Supply Chain Resilience Triangle
    Bevilacqua, M.
    Ciarapica, F. E.
    Marcucci, G.
    IFAC PAPERSONLINE, 2018, 51 (11): : 1528 - 1535
  • [29] Centrality in modular networks
    Ghalmane, Zakariya
    El Hassouni, Mohammed
    Cherifi, Chantal
    Cherifi, Hocine
    EPJ DATA SCIENCE, 2019, 8 (1)
  • [30] Modular Brain Networks
    Sporns, Olaf
    Betzel, Richard F.
    ANNUAL REVIEW OF PSYCHOLOGY, VOL 67, 2016, 67 : 613 - 640