Classifying the Mortality of People with Underlying Health Conditions Affected by COVID-19 Using Machine Learning Techniques

被引:4
|
作者
Mohammad, RamiMustafa A. [1 ]
Aljabri, Malak [2 ,3 ]
Aboulnour, Menna [3 ]
Mirza, Samiha [3 ]
Alshobaiki, Ahmad [3 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Informat Syst, POB 1982, Dammam 31441, Saudi Arabia
[2] Umm Al Qura Univ, Coll Comp & Informat Syst, Dept Comp Sci, Mecca 21955, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Sci, POB 1982, Dammam 31441, Saudi Arabia
关键词
MODEL;
D O I
10.1155/2022/3783058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The COVID-19 pandemic has greatly affected populations worldwide and has posed a significant challenge to medical systems. With the constant increase in the number of severe COVID-19 infections, an essential area of research has been directed towards predicting the mortality rate of these patients, in order to make informed medical decisions about the necessary healthcare priorities. Although a large amount of research has attempted to predict the mortality rate of COVID-19 patients, the association between the mortality rate of COVID-19 patients and their underlying health conditions has been given significantly less attention. Meanwhile, patients with underlying conditions often face a worse COVID-19 prognosis. Therefore, the goal of this study was to classify the mortality rate of patients diagnosed with COVID-19, who also suffer from underlying health conditions or comorbidities. To achieve our goal, we applied machine learning (ML) models on a new publicly available dataset, not investigated by any existing literature. The dataset provides detailed information on 582 COVID-19 patients and facilitates a robust forecasting model of the mortality rate. The dataset was analysed using seven ML classifiers, namely, Bagging, J48, logistic regression (LR), random forest (RF), support vector machine (SVM), naive Bayes (NB), and threshold selector. A comparative analysis was performed across the seven ML techniques, and their performance was assessed based on evaluation parameters including classification accuracy, true-positive rate, and false-positive rate. The best performance was demonstrated by the Bagging algorithm with an accuracy of 83.55% when using all the dataset features. The findings are intended to assist researchers and physicians in the early identification of at-risk COVID-19 patients and to make the appropriate intensive care decisions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Using Machine Learning to Predict Hospitalization and Mortality of COVID-19 Patients with Diabetic Retinopathy
    Zhong, Katherine
    Chen, Elizabeth
    Eickhoff, Carsten
    Greenberg, Paul
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [42] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    R. R. van de Leur
    H. Bleijendaal
    K. Taha
    T. Mast
    J. M. I. H. Gho
    M. Linschoten
    B. van Rees
    M. T. H. M. Henkens
    S. Heymans
    N. Sturkenboom
    R. A. Tio
    J. A. Offerhaus
    W. L. Bor
    M. Maarse
    H. E. Haerkens-Arends
    M. Z. H. Kolk
    A. C. J. van der Lingen
    J. J. Selder
    E. E. Wierda
    P. F. M. M. van Bergen
    M. M. Winter
    A. H. Zwinderman
    P. A. Doevendans
    P. van der Harst
    Y. M. Pinto
    F. W. Asselbergs
    R. van Es
    F. V. Y. Tjong
    Netherlands Heart Journal, 2022, 30 : 312 - 318
  • [43] Machine Learning Models to Predict Severity and Mortality of COVID-19 Using Neurological Symptoms
    Salehi, Mona
    Garakani, Amir
    Amanat, Man
    NEUROLOGY, 2023, 100 (17)
  • [44] Early COVID-19 Symptoms Identification Using Hybrid Unsupervised Machine Learning Techniques
    Ali, Omer
    Ishak, Mohamad Khairi
    Bhatti, Muhammad Kamran Liaquat
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 747 - 766
  • [45] Comparing tweet sentiments in megacities using machine learning techniques: In the midst of COVID-19
    Yao, Zhirui
    Yang, Junyan
    Liu, Jialin
    Keith, Michael
    Guan, Chenghe
    CITIES, 2021, 116
  • [46] Evaluating Public Sentiments of Covid-19 Vaccine Tweets Using Machine Learning Techniques
    Akpatsa, Samuel Kofi
    Lei, Hang
    Li, Xiaoyu
    Obeng, Victor-Hillary Kofi Setornyo
    INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2022, 46 (01): : 69 - 75
  • [47] Spatial Impressions Monitoring during COVID-19 Pandemic Using Machine Learning Techniques
    Noor, Talal H.
    Almars, Abdulqader
    Gad, Ibrahim
    Atlam, El-Sayed
    Elmezain, Mahmoud
    COMPUTERS, 2022, 11 (04)
  • [48] Detection of COVID-19 Patients Using Machine Learning Techniques: A Nationwide Chilean Study
    Ormeno, Pablo
    Marquez, Gaston
    Guerrero-Nancuante, Camilo
    Taramasco, Carla
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (13)
  • [49] Have the COVID-19 outbreak and related restrictions affected the right to mental health of people with severe mental health conditions?
    Nose, M.
    Gastaldon, C.
    Acarturk, C.
    Purgato, M.
    Ostuzzi, G.
    Barbui, C.
    INTERNATIONAL REVIEW OF PSYCHIATRY, 2023, 35 (02) : 180 - 193
  • [50] Machine Learning Techniques for Extracting Relevant Features from Clinical Data for COVID-19 Mortality Prediction
    Fraccaroli, Michele
    Mazzuchelli, Giulia
    Bizzarri, Alice
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,