Classifying the Mortality of People with Underlying Health Conditions Affected by COVID-19 Using Machine Learning Techniques

被引:4
|
作者
Mohammad, RamiMustafa A. [1 ]
Aljabri, Malak [2 ,3 ]
Aboulnour, Menna [3 ]
Mirza, Samiha [3 ]
Alshobaiki, Ahmad [3 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Informat Syst, POB 1982, Dammam 31441, Saudi Arabia
[2] Umm Al Qura Univ, Coll Comp & Informat Syst, Dept Comp Sci, Mecca 21955, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Sci, POB 1982, Dammam 31441, Saudi Arabia
关键词
MODEL;
D O I
10.1155/2022/3783058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The COVID-19 pandemic has greatly affected populations worldwide and has posed a significant challenge to medical systems. With the constant increase in the number of severe COVID-19 infections, an essential area of research has been directed towards predicting the mortality rate of these patients, in order to make informed medical decisions about the necessary healthcare priorities. Although a large amount of research has attempted to predict the mortality rate of COVID-19 patients, the association between the mortality rate of COVID-19 patients and their underlying health conditions has been given significantly less attention. Meanwhile, patients with underlying conditions often face a worse COVID-19 prognosis. Therefore, the goal of this study was to classify the mortality rate of patients diagnosed with COVID-19, who also suffer from underlying health conditions or comorbidities. To achieve our goal, we applied machine learning (ML) models on a new publicly available dataset, not investigated by any existing literature. The dataset provides detailed information on 582 COVID-19 patients and facilitates a robust forecasting model of the mortality rate. The dataset was analysed using seven ML classifiers, namely, Bagging, J48, logistic regression (LR), random forest (RF), support vector machine (SVM), naive Bayes (NB), and threshold selector. A comparative analysis was performed across the seven ML techniques, and their performance was assessed based on evaluation parameters including classification accuracy, true-positive rate, and false-positive rate. The best performance was demonstrated by the Bagging algorithm with an accuracy of 83.55% when using all the dataset features. The findings are intended to assist researchers and physicians in the early identification of at-risk COVID-19 patients and to make the appropriate intensive care decisions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Classifying COVID-19 Patients From Chest X-ray Images Using Hybrid Machine Learning Techniques: Development and Evaluation
    Phumkuea, Thanakorn
    Wongsirichot, Thakerng
    Damkliang, Kasikrit
    Navasakulpong, Asma
    JMIR FORMATIVE RESEARCH, 2023, 7
  • [32] Classifying COVID-19 based on amino acids encoding with machine learning algorithms
    Alkady, Walaa
    ElBahnasy, Khaled
    Leiva, Victor
    Gad, Walaa
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 224
  • [33] Machine learning algorithms for predicting COVID-19 mortality in Ethiopia
    Alie, Melsew Setegn
    Negesse, Yilkal
    Kindie, Kassa
    Merawi, Dereje Senay
    BMC PUBLIC HEALTH, 2024, 24 (01)
  • [34] Comparing machine learning algorithms for predicting COVID-19 mortality
    Khadijeh Moulaei
    Mostafa Shanbehzadeh
    Zahra Mohammadi-Taghiabad
    Hadi Kazemi-Arpanahi
    BMC Medical Informatics and Decision Making, 22
  • [35] Predicting the mortality of patients with Covid-19: A machine learning approach
    Emami, Hassan
    Rabiei, Reza
    Sohrabei, Solmaz
    Atashi, Alireza
    HEALTH SCIENCE REPORTS, 2023, 6 (04)
  • [36] Comparing machine learning algorithms for predicting COVID-19 mortality
    Moulaei, Khadijeh
    Shanbehzadeh, Mostafa
    Mohammadi-Taghiabad, Zahra
    Kazemi-Arpanahi, Hadi
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [37] A machine learning based exploration of COVID-19 mortality risk
    Mahdavi, Mahdi
    Choubdar, Hadi
    Zabeh, Erfan
    Rieder, Michael
    Safavi-Naeini, Safieddin
    Jobbagy, Zsolt
    Ghorbani, Amirata
    Abedini, Atefeh
    Kiani, Arda
    Khanlarzadeh, Vida
    Lashgari, Reza
    Kamrani, Ehsan
    PLOS ONE, 2021, 16 (07):
  • [38] Using Machine Learning to Predict Mortality for COVID-19 Patients on Day 0 in the ICU
    Jamshidi, Elham
    Asgary, Amirhossein
    Tavakoli, Nader
    Zali, Alireza
    Setareh, Soroush
    Esmaily, Hadi
    Jamaldini, Seyed Hamid
    Daaee, Amir
    Babajani, Amirhesam
    Kashi, Mohammad Ali Sendani
    Jamshidi, Masoud
    Rahi, Sahand Jamal
    Mansouri, Nahal
    FRONTIERS IN DIGITAL HEALTH, 2022, 3
  • [39] COVID-19 ICU mortality prediction: a machine learning approach using SuperLearner algorithm
    Lorenzoni G.
    Sella N.
    Boscolo A.
    Azzolina D.
    Bartolotta P.
    Pasin L.
    Pettenuzzo T.
    De Cassai A.
    Baratto F.
    Toffoletto F.
    De Rosa S.
    Fullin G.
    Peta M.
    Rosi P.
    Polati E.
    Zanella A.
    Grasselli G.
    Pesenti A.
    Navalesi P.
    Gregori D.
    Journal of Anesthesia, Analgesia and Critical Care, 1 (1):
  • [40] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    van de Leur, R. R.
    Bleijendaal, H.
    Taha, K.
    Mast, T.
    Gho, J. M. I. H.
    Linschoten, M.
    van Rees, B.
    Henkens, M. T. H. M.
    Heymans, S.
    Sturkenboom, N.
    Tio, R. A.
    Offerhaus, J. A.
    Bor, W. L.
    Maarse, M.
    Haerkens-Arends, H. E.
    Kolk, M. Z. H.
    van der Lingen, A. C. J.
    Selder, J. J.
    Wierda, E. E.
    van Bergen, P. F. M. M.
    Winter, M. M.
    Zwinderman, A. H.
    Doevendans, P. A.
    van der Harst, P.
    Pinto, Y. M.
    Asselbergs, F. W.
    van Es, R.
    Tjong, F. V. Y.
    NETHERLANDS HEART JOURNAL, 2022, 30 (06) : 312 - 318