Hilbert C*-modules with a predual

被引:0
|
作者
Schweizer, J [1 ]
机构
[1] Univ Tubingen, Inst Math, D-72076 Tubingen, Germany
关键词
Hilbert W*-module; Hilbert C*-module; correspondence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Sakai's characterization of von Neumann algebras to the context of Hilbert C*-modules. If A, B are C*-algebras and X is a full Hilbert A-B-bimodule possessing a predual such that left, respectively right, multiplications are weak*-continuous, then M(A) and M(B) are W*-algebras, the predual is unique, and X is selfdual in the sense of Paschke. For unital A, B the above continuity requirement is automatic. We determine the dual Banach space X* of a Hilbert A-B-bimodule X and show that Paschke's selfdual completion of X is isomorphic to the bidual X**, which is a Hilbert C*-module in a natural way. We conclude with a new approach to multipliers of Hilbert C*-bimodules.
引用
收藏
页码:621 / 632
页数:12
相关论文
共 50 条
  • [41] Jordan derivations on Hilbert C*-modules
    Chen, Huimin
    Qi, Xiaofei
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (05): : 968 - 984
  • [42] Hypercyclic operators on Hilbert C*-modules
    Ivkovic, Stefan
    FILOMAT, 2024, 38 (06) : 1901 - 1913
  • [43] Representability of functionals on Hilbert C*-modules
    Manuilov, VM
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1996, 30 (04) : 287 - 289
  • [44] Continuous frame in Hilbert C*-modules
    Rossafi, Mohamed
    Ghiati, M'hamed
    Mouniane, Mohammed
    Chouchene, Frej
    Touri, Abdeslam
    Kabbaj, Samir
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2531 - 2561
  • [45] Unbounded operators on Hilbert C*-modules
    Gebhardt, Rene
    Schmuedgen, Konrad
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (11)
  • [46] FRAMES AND OPERATORS IN HILBERT C*-MODULES
    Najati, Abbas
    Saem, M. Mohammadi
    Gavruta, P.
    OPERATORS AND MATRICES, 2016, 10 (01): : 73 - 81
  • [47] Weaving Frames in Hilbert C*-Modules
    Zhao, Xin
    Li, Pengtong
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [48] Regular operators on Hilbert C*-modules
    Pal, A
    JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 331 - 350
  • [49] ORTHOGONAL COMPLEMENTING IN HILBERT C*-MODULES
    Guljas, Boris
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (02): : 196 - 202
  • [50] On Continuous Frames in Hilbert C∗-Modules
    Ghasemi, Hadi
    Shateri, Tayebe Lal
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (02): : 327 - 349