Hilbert C*-modules with a predual

被引:0
|
作者
Schweizer, J [1 ]
机构
[1] Univ Tubingen, Inst Math, D-72076 Tubingen, Germany
关键词
Hilbert W*-module; Hilbert C*-module; correspondence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Sakai's characterization of von Neumann algebras to the context of Hilbert C*-modules. If A, B are C*-algebras and X is a full Hilbert A-B-bimodule possessing a predual such that left, respectively right, multiplications are weak*-continuous, then M(A) and M(B) are W*-algebras, the predual is unique, and X is selfdual in the sense of Paschke. For unital A, B the above continuity requirement is automatic. We determine the dual Banach space X* of a Hilbert A-B-bimodule X and show that Paschke's selfdual completion of X is isomorphic to the bidual X**, which is a Hilbert C*-module in a natural way. We conclude with a new approach to multipliers of Hilbert C*-bimodules.
引用
收藏
页码:621 / 632
页数:12
相关论文
共 50 条
  • [21] Invertibility of Multipliers in Hilbert C*-modules
    Rashidi-Kouchi, M.
    Rahimi, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (01): : 21 - 37
  • [22] NUMERICAL RADIUS IN HILBERT C*-MODULES
    Zamani, Ali
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1017 - 1030
  • [23] MORITA EQUIVALENCE OF HILBERT C*- MODULES
    Amini, Massoud
    Asadi, Mohammad B.
    Joita, Maria
    Rezavand, Reza
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (01): : 102 - 110
  • [24] On equivariant embedding of Hilbert C* modules
    Debashish Goswami
    Proceedings - Mathematical Sciences, 2009, 119 : 63 - 70
  • [25] Hilbert C*-modules over Σ*-aIgebras
    Bearden, Clifford A.
    STUDIA MATHEMATICA, 2016, 235 (03) : 269 - 304
  • [26] Pair frames in Hilbert C*-modules
    Azandaryani, M. Mirzaee
    Fereydooni, A.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [27] On extendability of functionals on Hilbert C*-modules
    Manuilov, Vladimir
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (03) : 998 - 1005
  • [28] Crossed products of Hilbert C*-modules
    Bui, HH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (05) : 1341 - 1348
  • [29] Hilbert C*- and W*-modules and their morphisms
    Manuilov V.M.
    Troitsky E.V.
    Journal of Mathematical Sciences, 2000, 98 (2) : 137 - 201
  • [30] Variational inequalities on Hilbert C*-modules
    Fathi, H.
    Hosseinioun, S. A. R.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2015, 7 (01): : 155 - 165