Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution

被引:522
|
作者
Chen, Wenxing [1 ,2 ]
Pei, Jiajing [3 ,4 ]
He, Chun-Ting [5 ]
Wan, Jiawei [1 ]
Ren, Hanlin [1 ]
Wang, Yu [6 ]
Dong, Juncai [7 ]
Wu, Konglin [1 ]
Cheong, Weng-Chon [1 ]
Mao, Junjie [1 ]
Zheng, Xusheng [8 ]
Yan, Wensheng [8 ]
Zhuang, Zhongbin [3 ,4 ]
Chen, Chen [1 ]
Peng, Qing [1 ]
Wang, Dingsheng [1 ]
Li, Yadong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Construct Tailorable Adv Funct Ma, Beijing 100081, Peoples R China
[3] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[4] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
[5] Sun Yat Sen Univ, Sch Chem, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Guangdong, Peoples R China
[6] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[7] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[8] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
electrocatalysts; hydrogen evolution reaction; metal-organic frameworks; N-doped carbon; single W atoms; METAL-ORGANIC FRAMEWORKS; OXYGEN REDUCTION; CARBIDE NANOPARTICLES; EFFICIENT; CONVERSION; CATALYSTS; ELECTROCATALYSTS; GRAPHENE; SITES; ULTRASMALL;
D O I
10.1002/adma.201800396
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tungsten-based catalysts are promising candidates to generate hydrogen effectively. In this work, a single-W-atom catalyst supported on metal-organic framework (MOF)-derived N-doped carbon (W-SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1N1C3 moiety may be the favored local structure for the W species. The W-SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm(-2) and a small Tafel slope of 53 mV dec(-1), in 0.1 m KOH solution. The HER activity of the W-SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1N1C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W-based HER catalysts.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Construction of N-doped carbon frames anchored with Co single atoms and Co nanoparticles as robust electrocatalyst for hydrogen evolution in the entire pH range
    Wang, Minmin
    Li, Min
    Zhao, Yilin
    Shi, Naiyou
    Zhang, Hui
    Zhao, Yuxue
    Zhang, Yaru
    Zhang, Haoran
    Wang, Wenhong
    Sun, Kaian
    Pan, Yuan
    Liu, Shoujie
    Zhu, Houyu
    Guo, Wenyue
    Li, Yanpeng
    Liu, Yunqi
    Liu, Chenguang
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 147 - 156
  • [42] Construction of N-doped carbon frames anchored with Co single atoms and Co nanoparticles as robust electrocatalyst for hydrogen evolution in the entire pH range
    Minmin Wang
    Min Li
    Yilin Zhao
    Naiyou Shi
    Hui Zhang
    Yuxue Zhao
    Yaru Zhang
    Haoran Zhang
    Wenhong Wang
    Kaian Sun
    Yuan Pan
    Shoujie Liu
    Houyu Zhu
    Wenyue Guo
    Yanpeng Li
    Yunqi Liu
    Chenguang Liu
    Journal of Energy Chemistry , 2022, (04) : 147 - 156
  • [43] Single platinum atoms anchored on N-doped carbon materials composed of bipyridine as efficient hydrogen evolution electrocatalysts
    Zhai, Shengliang
    Zhai, Dong
    Sun, Lanju
    Feng, Nianyun
    Chen, Xiaokang
    Deng, Wei-Qiao
    Wu, Hao
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (14) : 2889 - 2895
  • [44] MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption
    Juhua Luo
    Mengna Feng
    Ziyang Dai
    Chenye Jiang
    Wei Yao
    Naixin Zhai
    Nano Research, 2022, 15 : 5781 - 5789
  • [45] MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption
    Luo, Juhua
    Feng, Mengna
    Dai, Ziyang
    Jiang, Chenye
    Yao, Wei
    Zhai, Naixin
    NANO RESEARCH, 2022, 15 (07) : 5781 - 5789
  • [46] MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage
    Huang, Man
    Mi, Kan
    Zhang, Junhao
    Liu, Huili
    Yu, Tingting
    Yuan, Aihua
    Kong, Qinghong
    Xiong, Shenglin
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (01) : 266 - 274
  • [47] Hierarchical N-doped CNTs grafted onto MOF-derived porous carbon nanomaterials for efficient oxygen reduction
    Guo, Yuanyuan
    Dong, Anrui
    Huang, Qi
    Li, Qipeng
    Hu, Yue
    Qian, Jinjie
    Huang, Shaoming
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 606 : 1833 - 1841
  • [48] Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance
    Chai, Lulu
    Zhang, Linjie
    Wang, Xian
    Xu, Leqiong
    Han, Cheng
    Li, Ting-Ting
    Hu, Yue
    Qian, Jinjie
    Huang, Shaoming
    CARBON, 2019, 146 : 248 - 256
  • [49] A MOF-derived nickel based N-doped mesoporous carbon catalyst with high catalytic activity for the reduction of nitroarenes
    Zuo, Wei
    Yu, Guiqin
    Dong, Zhengping
    RSC ADVANCES, 2016, 6 (14): : 11749 - 11753
  • [50] 3D hierarchical MOF-derived CoP@N-doped carbon composite foam for efficient hydrogen evolution reaction
    Wang, Yanzhong
    Li, Sha
    Chen, You
    Shi, Xiaofeng
    Wang, Chao
    Guo, Li
    APPLIED SURFACE SCIENCE, 2020, 505