Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution

被引:522
|
作者
Chen, Wenxing [1 ,2 ]
Pei, Jiajing [3 ,4 ]
He, Chun-Ting [5 ]
Wan, Jiawei [1 ]
Ren, Hanlin [1 ]
Wang, Yu [6 ]
Dong, Juncai [7 ]
Wu, Konglin [1 ]
Cheong, Weng-Chon [1 ]
Mao, Junjie [1 ]
Zheng, Xusheng [8 ]
Yan, Wensheng [8 ]
Zhuang, Zhongbin [3 ,4 ]
Chen, Chen [1 ]
Peng, Qing [1 ]
Wang, Dingsheng [1 ]
Li, Yadong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Construct Tailorable Adv Funct Ma, Beijing 100081, Peoples R China
[3] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[4] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
[5] Sun Yat Sen Univ, Sch Chem, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Guangdong, Peoples R China
[6] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[7] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[8] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
electrocatalysts; hydrogen evolution reaction; metal-organic frameworks; N-doped carbon; single W atoms; METAL-ORGANIC FRAMEWORKS; OXYGEN REDUCTION; CARBIDE NANOPARTICLES; EFFICIENT; CONVERSION; CATALYSTS; ELECTROCATALYSTS; GRAPHENE; SITES; ULTRASMALL;
D O I
10.1002/adma.201800396
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tungsten-based catalysts are promising candidates to generate hydrogen effectively. In this work, a single-W-atom catalyst supported on metal-organic framework (MOF)-derived N-doped carbon (W-SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1N1C3 moiety may be the favored local structure for the W species. The W-SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm(-2) and a small Tafel slope of 53 mV dec(-1), in 0.1 m KOH solution. The HER activity of the W-SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1N1C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W-based HER catalysts.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Highly efficient and recyclable Ni MOF-derived N-doped magnetic mesoporous carbon-supported palladium catalysts for the hydrodechlorination of chlorophenols
    Cui, Xueliang
    Zuo, Wei
    Tian, Meng
    Dong, Zhengping
    Ma, Jiantai
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2016, 423 : 386 - 392
  • [32] N-Doped Carbon-Coated Tungsten Oxynitride Nanowire Arrays for Highly Efficient Electrochemical Hydrogen Evolution
    Li, Qun
    Cui, Wei
    Tian, Jingqi
    Xing, Zhicai
    Liu, Qian
    Xing, Wei
    Asiri, Abdullah M.
    Sun, Xuping
    CHEMSUSCHEM, 2015, 8 (15) : 2487 - 2491
  • [33] MOF-Derived Cu3P nanoparticles coated with N-doped carbon for nitrogen fixation
    Li, Jian
    Lu, Xiaoying
    Huang, Junfeng
    Guo, Kailu
    Xu, Cailing
    CHEMICAL COMMUNICATIONS, 2022, 58 (16) : 2678 - 2681
  • [34] MOF-derived NiO/Ni architecture encapsulated into N-doped carbon nanotubes for advanced asymmetric supercapacitors
    Wang, Lixin
    Jiao, Yang
    Yao, Shunyu
    Li, Peiying
    Wang, Rui
    Chen, Gang
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (06) : 1553 - 1560
  • [35] MOF-derived MoC-Fe heterojunctions encapsulated in N-doped carbon nanotubes for water splitting
    Huang, Minghong
    Zhou, Shenghua
    Ma, Dong-Dong
    Wei, Wenbo
    Zhu, Qi-Long
    Huang, Zhenguo
    CHEMICAL ENGINEERING JOURNAL, 2023, 473
  • [36] Tailoring the porosity of MOF-derived N-doped carbon electrocatalysts for highly efficient solar energy conversion
    Kang, Jin Soo
    Kang, Jiho
    Chung, Dong Young
    Son, Yoon Jun
    Kim, Seoni
    Kim, Sungjun
    Kim, Jin
    Jeong, Juwon
    Lee, Myeong Jae
    Shin, Heejong
    Park, Subin
    Yoo, Sung Jong
    Ko, Min Jae
    Yoon, Jeyong
    Sung, Yung-Eun
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (41) : 20170 - 20183
  • [37] Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction
    Zhang, Zhengping
    Gao, Xinjin
    Dou, Meiling
    Ji, Jing
    Wang, Feng
    SMALL, 2017, 13 (22)
  • [38] MOF-Derived N-Doped Carbon-Wrapped Ni Electrocatalyst for Highly Efficient Electrochemical CO2 Reduction to CO
    Guo, Minglong
    Du, Shengjun
    Yang, Guangxing
    Zhang, Qiao
    Liu, Zhiting
    Peng, Feng
    ENERGY & FUELS, 2024, 38 (12) : 11043 - 11050
  • [39] Waste silk fabric derived N-doped carbon as a self-supported electrocatalyst for hydrogen evolution reaction
    Zhang, Wenqin
    Xi, Ruifan
    Li, Yuanyuan
    Zhang, Yan
    Wang, Ping
    Hu, Dongmei
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 658
  • [40] Sustainable aerobic oxidative coupling of thiols and amines for selective formation of sulfenamides using MOF-derived cobalt nanoparticles supported on N-doped carbon
    Guo, Ya-Fei
    Dong, Le
    Ma, Jun-Ying
    Feng, Shu-Xiao
    Duan, Yong-Hua
    Xu, Bao-Hua
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (48) : 23321 - 23327