Parameter estimation of Gaussian stationary processes using the generalized method of moments

被引:16
|
作者
Barboza, Luis A. [1 ]
Viens, Frederi G. [2 ]
机构
[1] Univ Costa Rica, CIMPA, San Jose, Costa Rica
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
Fractional Brownian motion; Ornstein Uhlenbeck process; method of moments; CENTRAL LIMIT-THEOREMS; LARGE-SAMPLE PROPERTIES; QUADRATIC VARIATIONS; MALLIAVIN CALCULUS; LONG-MEMORY; DISCRETE; INDEX; TIME;
D O I
10.1214/17-EJS1230
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the class of all stationary Gaussian process with explicit parametric spectral density. Under some conditions on the autocovariance function, we defined a GMM estimator that satisfies consistency and asymptotic normality, using the Breuer-Major theorem and previous results on ergodicity. This result is applied to the joint estimation of the three parameters of a stationary Ornstein-Uhlenbeck (fOU) process driven by a fractional Brownian motion. The asymptotic normality of its GMM estimator applies for any H in (0, 1) and under some restrictions on the remaining parameters. A numerical study is performed in the fOU case, to illustrate the estimator's practical performance when the number of data-points is moderate.
引用
收藏
页码:401 / 439
页数:39
相关论文
共 50 条
  • [41] Hellinger distance estimation of stationary Gaussian strongly dependent processes
    N'dri, Aubin
    Hili, Ouagnina
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (17-18) : 991 - 994
  • [42] SPECTRAL ESTIMATION FOR STRONGLY DEPENDENT STATIONARY GAUSSIAN-PROCESSES
    DOUKHAN, P
    LEON, JR
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (08): : 523 - 526
  • [43] Gaussian quadrature method for GLD parameter estimation
    Ahmadabadi, Majid Nili
    Nili Ahmadabadi, Mohammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (04) : 1699 - 1711
  • [44] Gaussian pseudo-likelihood estimation for stationary processes on a lattice
    Chrysoula Dimitriou-Fakalou
    AStA Advances in Statistical Analysis, 2014, 98 : 21 - 34
  • [45] Some remarks on Nakagami-m parameter estimation using method of moments
    Gaeddert, J
    Annamalai, A
    IEEE COMMUNICATIONS LETTERS, 2005, 9 (04) : 313 - 315
  • [46] Efficient ML estimation of the shape parameter for generalized Gaussian MRFs
    Saquib, SS
    Bouman, CA
    Sauer, K
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2227 - 2230
  • [47] Parameter estimation for the Langevin equation with stationary-increment Gaussian noise
    Sottinen T.
    Viitasaari L.
    Statistical Inference for Stochastic Processes, 2018, 21 (3) : 569 - 601
  • [48] Controlled Parameter Estimation for The AR(1) Model with Stationary Gaussian Noise
    Sun, Lin
    Cai, Chunhao
    Zhang, Min
    FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [49] Convex Parameter Estimation of Perturbed Multivariate Generalized Gaussian Distributions
    Ouzir, Nora
    Pascal, Frederic
    Pesquet, Jean-Christophe
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 4132 - 4146
  • [50] Signal modeling and parameter estimation for 1/f processes using scale stationary models
    Yazici, B
    Kashyap, RL
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2841 - 2844