Parameter estimation of Gaussian stationary processes using the generalized method of moments

被引:16
|
作者
Barboza, Luis A. [1 ]
Viens, Frederi G. [2 ]
机构
[1] Univ Costa Rica, CIMPA, San Jose, Costa Rica
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
Fractional Brownian motion; Ornstein Uhlenbeck process; method of moments; CENTRAL LIMIT-THEOREMS; LARGE-SAMPLE PROPERTIES; QUADRATIC VARIATIONS; MALLIAVIN CALCULUS; LONG-MEMORY; DISCRETE; INDEX; TIME;
D O I
10.1214/17-EJS1230
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the class of all stationary Gaussian process with explicit parametric spectral density. Under some conditions on the autocovariance function, we defined a GMM estimator that satisfies consistency and asymptotic normality, using the Breuer-Major theorem and previous results on ergodicity. This result is applied to the joint estimation of the three parameters of a stationary Ornstein-Uhlenbeck (fOU) process driven by a fractional Brownian motion. The asymptotic normality of its GMM estimator applies for any H in (0, 1) and under some restrictions on the remaining parameters. A numerical study is performed in the fOU case, to illustrate the estimator's practical performance when the number of data-points is moderate.
引用
收藏
页码:401 / 439
页数:39
相关论文
共 50 条
  • [21] PARAMETER ESTIMATION BY WEIGHTED MOMENTS METHOD
    ANDERSSEN, AS
    WHITE, ET
    CHEMICAL ENGINEERING SCIENCE, 1971, 26 (08) : 1203 - +
  • [22] PARAMETER-ESTIMATION OF CONTINUOUS-TIME STATIONARY GAUSSIAN-PROCESSES WITH RATIONAL SPECTRA
    PORAT, B
    FRIEDLANDER, B
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1987, 6 (01) : 107 - 119
  • [23] Using Samples of Unequal Length in Generalized Method of Moments Estimation
    Lynch, Anthony W.
    Wachter, Jessica A.
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 2013, 48 (01) : 277 - 307
  • [24] Parameter estimation of locally stationary wavelet processes
    Johnson, A
    Li, CC
    WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING X, PTS 1 AND 2, 2003, 5207 : 858 - 867
  • [25] Applications of generalized method of moments estimation
    Wooldridge, JM
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 87 - 100
  • [26] BIOPHYSICAL PARAMETER ESTIMATION WITH ADAPTIVE GAUSSIAN PROCESSES
    Camps-Valls, G.
    Gomez-Chova, L.
    Munoz-Mari, I.
    Vila-Frances, J.
    Amoros, J.
    del Valle-Tascon, S.
    Calpe-Maravilla, J.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2449 - +
  • [27] Parameter Estimation of Bernoulli-Gaussian Noise Using Fractional Order Absolute Moments
    Liu, Xiaoxiao
    Xu, Jing
    Liu, Yingwen
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (01) : 312 - 316
  • [28] Parameter Estimation for Linear Regression Models in Powerline Communication Systems Noise Using Generalized Method of Moments (GMM)
    Mosalaosi, M.
    Afullo, T. J. O.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 4858 - 4862
  • [29] Fixed parameter estimation method using Gaussian particle filter
    Wang, Lixin
    COMPUTATIONAL INTELLIGENCE AND BIOINFORMATICS, PT 3, PROCEEDINGS, 2006, 4115 : 121 - 129