Bayesian smoothing with Gaussian processes using Fourier basis functions in the spectralGP package

被引:0
|
作者
Paciorek, Christopher J. [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2007年 / 19卷 / 02期
关键词
Bayesian statistics; Fourier basis; FFT; geostatistics; generalized linear mixed model; generalized additive model; Markov chain Monte Carlo; spatial statistics; spectral representation;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The spectral representation of stationary Gaussian processes via the Fourier basis provides a computationally efficient specification of spatial surfaces and nonparametric regression functions for use in various statistical models. I describe the representation in detail and introduce the spectralGP package in R for computations. Because of the large number of basis coefficients, some form of shrinkage is necessary; I focus on a natural Bayesian approach via a particular parameterized prior structure that approximates stationary Gaussian processes on a regular grid. I review several models from the literature for data that do not lie on a grid, suggest a simple model modification, and provide example code demonstrating MCMC sampling using the spectralGP package. I describe reasons that mixing can be slow in certain situations and provide some suggestions for MCMC techniques to improve mixing, also with example code, and some general recommendations grounded in experience.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 50 条
  • [41] A Bayesian survival treed hazards model using latent Gaussian processes
    Payne, Richard D.
    Guha, Nilabja
    Mallick, Bani K.
    BIOMETRICS, 2024, 80 (01)
  • [42] Bayesian inversion using nested trans-dimensional Gaussian processes
    Ray, Anandaroop
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 226 (01) : 302 - 326
  • [43] Bayesian deconvolution of oil well test data using Gaussian processes
    Andres Christen, J.
    Sanso, Bruno
    Santana-Cibrian, Mario
    Velasco-Hernandez, Jorge X.
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (04) : 721 - 737
  • [44] Safety Uncertainty in Control Barrier Functions using Gaussian Processes
    Khan, Mouhyemen
    Ibuki, Tatsuya
    Chatterjee, Abhijit
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 6003 - 6009
  • [45] Improving the resolution of peak estimation on a sparsely sampled surface with high variance using Gaussian processes and radial basis functions
    Boltryk, PJ
    Hill, M
    White, PR
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (04) : 955 - 965
  • [46] Closed fringe demodulation using phase decomposition by Fourier basis functions
    Kulkarni, Rishikesh
    Rastogi, Pramod
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (06) : 1120 - 1125
  • [47] Crystal diffraction prediction and partiality estimation using Gaussian basis functions
    Brehm, Wolfgang
    White, Thomas
    Chapman, Henry N.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : 145 - 162
  • [48] Forward deterministic pricing of options using Gaussian radial basis functions
    Rad, Jamal Amani
    Hook, Josef
    Larsson, Elisabeth
    von Sydow, Lina
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 24 : 209 - 217
  • [49] ENHANCED RANGE ALIGNMENT USING A COMBINATION OF A POLYNOMIAL AND GAUSSIAN BASIS FUNCTIONS
    Park, S. H.
    Kim, H. T.
    Kim, K. T.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2009, 95 : 381 - 396
  • [50] BAYESIAN ANALYSIS OF SHAPE-RESTRICTED FUNCTIONS USING GAUSSIAN PROCESS PRIORS
    Lenk, Peter J.
    Choi, Taeryon
    STATISTICA SINICA, 2017, 27 (01) : 43 - 69