Crystal diffraction prediction and partiality estimation using Gaussian basis functions

被引:0
|
作者
Brehm, Wolfgang [1 ,2 ]
White, Thomas [1 ]
Chapman, Henry N. [1 ,2 ,3 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Notkestr 85, D-22607 Hamburg, Germany
[2] Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
关键词
partiality estimation; diffraction prediction; merging; serial snapshot crystallography; SYNCHROTRON X-RADIATION; SERIAL FEMTOSECOND CRYSTALLOGRAPHY; REFLECTING RANGE; POST-REFINEMENT; PROFILE;
D O I
10.1107/S2053273323000682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The recent diversification of macromolecular crystallographic experiments including the use of pink beams, convergent electron diffraction and serial snapshot crystallography has shown the limitations of using the Laue equations for diffraction prediction. This article gives a computationally efficient way of calculating approximate crystal diffraction patterns given varying distributions of the incoming beam, crystal shapes and other potentially hidden parameters. This approach models each pixel of a diffraction pattern and improves data processing of integrated peak intensities by enabling the correction of partially recorded reflections. The fundamental idea is to express the distributions as weighted sums of Gaussian functions. The approach is demonstrated on serial femtosecond crystallography data sets, showing a significant decrease in the required number of patterns to refine a structure to a given error.
引用
收藏
页码:145 / 162
页数:18
相关论文
共 50 条
  • [1] Phase retrieval using Gaussian basis functions
    Bahk, Seung-Whan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (09) : 2256 - 2261
  • [2] Computation of 2D Fourier transforms and diffraction integrals using Gaussian radial basis functions
    Martinez-Finkelshtein, A.
    Ramos-Lopez, D.
    Iskander, D. R.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 43 (03) : 424 - 448
  • [3] Gaussian basis functions for chemometrics
    Karna, Tuomas
    Corona, Francesco
    Lendasse, Amaury
    JOURNAL OF CHEMOMETRICS, 2008, 22 (11-12) : 701 - 707
  • [4] Development of protonic and deuteronic basis functions using Gaussian-type functions
    Ishimoto, Takayoshi
    Tachikawa, Masanori
    Inadomi, Yuichi
    Umeda, Hiroaki
    Watanabe, Toshio
    Nagashima, Umpei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [5] Digital image interpolation using adaptive Gaussian basis functions
    Hunt, TD
    Gustafson, SC
    COMPUTATIONAL IMAGING II, 2004, 5299 : 399 - 406
  • [6] Approximation using Gaussian Radial Basis Functions at Different Scales
    Levesley, Jeremy
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [7] Topology Optimization of Metamaterial Using Gaussian-Basis Functions
    Ye Fangzhou
    Igarashi, Hajime
    JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING, 2019, 6 (01): : 149 - 156
  • [8] Radial basis functions and improved hyperparameter optimisation for gaussian process strain estimation
    Gregg, A. W. T.
    Hendriks, J. N.
    Wensrich, C. M.
    O'Dell, N.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2020, 480 : 67 - 77
  • [9] On polarization functions for Gaussian basis sets
    Maringolo, Milena Palhares
    Mora Tello, Ana Cristina
    Guimaraes, Amanda Ribeiro
    Aragon Alves, Julia Maria
    Alves Lima, Francisco das Chagas
    Longo, Elson
    Ferreira da Silva, Alberico Borges
    JOURNAL OF MOLECULAR MODELING, 2020, 26 (10)
  • [10] On polarization functions for Gaussian basis sets
    Milena Palhares Maringolo
    Ana Cristina Mora Tello
    Amanda Ribeiro Guimarães
    Júlia Maria Aragon Alves
    Francisco das Chagas Alves Lima
    Elson Longo
    Albérico Borges Ferreira da Silva
    Journal of Molecular Modeling, 2020, 26