Crystal diffraction prediction and partiality estimation using Gaussian basis functions

被引:0
|
作者
Brehm, Wolfgang [1 ,2 ]
White, Thomas [1 ]
Chapman, Henry N. [1 ,2 ,3 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Notkestr 85, D-22607 Hamburg, Germany
[2] Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
关键词
partiality estimation; diffraction prediction; merging; serial snapshot crystallography; SYNCHROTRON X-RADIATION; SERIAL FEMTOSECOND CRYSTALLOGRAPHY; REFLECTING RANGE; POST-REFINEMENT; PROFILE;
D O I
10.1107/S2053273323000682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The recent diversification of macromolecular crystallographic experiments including the use of pink beams, convergent electron diffraction and serial snapshot crystallography has shown the limitations of using the Laue equations for diffraction prediction. This article gives a computationally efficient way of calculating approximate crystal diffraction patterns given varying distributions of the incoming beam, crystal shapes and other potentially hidden parameters. This approach models each pixel of a diffraction pattern and improves data processing of integrated peak intensities by enabling the correction of partially recorded reflections. The fundamental idea is to express the distributions as weighted sums of Gaussian functions. The approach is demonstrated on serial femtosecond crystallography data sets, showing a significant decrease in the required number of patterns to refine a structure to a given error.
引用
收藏
页码:145 / 162
页数:18
相关论文
共 50 条
  • [41] Prediction of speech quality using radial basis functions neural networks
    Meky, MM
    Saadawi, TN
    SECOND IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, PROCEEDINGS, 1997, : 174 - 178
  • [42] Prediction of critical desalination parameters using radial basis functions networks
    Jafar, MM
    Zilouchian, A
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2002, 34 (02) : 219 - 230
  • [43] Prediction of Critical Desalination Parameters Using Radial Basis Functions Networks
    Mutaz M. Jafar
    Ali Zilouchian
    Journal of Intelligent and Robotic Systems, 2002, 34 : 219 - 230
  • [44] Representing Probabilistic Rules with Networks of Gaussian Basis Functions
    Volker Tresp
    Jürgen Hollatz
    Subutai Ahmad
    Machine Learning, 1997, 27 : 173 - 200
  • [45] Gaussian radial basis functions and inner product spaces
    Sandberg, IW
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2001, 20 (06) : 635 - 642
  • [46] Indexed families of functionals, and gaussian radial basis functions
    Sandberg, IW
    2002 45TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL I, CONFERENCE PROCEEDINGS, 2002, : 184 - 187
  • [47] A reconfigurable gaussian/triangular basis functions computation circuit
    Abuelma'atti, Muhammad Taher
    Shwelmeh, Abdullah
    2006 IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, VOLS 1-3, 2006, : 232 - +
  • [48] EVALUATION OF MOLECULAR INTEGRALS OVER GAUSSIAN BASIS FUNCTIONS
    DUPUIS, M
    RYS, J
    KING, HF
    JOURNAL OF CHEMICAL PHYSICS, 1976, 65 (01): : 111 - 116
  • [49] Gaussian radial basis functions and inner product spaces
    Irwin W. Sandberg
    Circuits, Systems and Signal Processing, 2001, 20 : 635 - 642
  • [50] Generating the gaussian basis functions for multigaussian beam models
    Schmerr, Lester W., Jr.
    Lopez-Sanchez, Ana
    Sedov, Alexander
    Review of Progress in Quantitative Nondestructive Evaluation, Vols 26A and 26B, 2007, 894 : 878 - 885