Crystal diffraction prediction and partiality estimation using Gaussian basis functions

被引:0
|
作者
Brehm, Wolfgang [1 ,2 ]
White, Thomas [1 ]
Chapman, Henry N. [1 ,2 ,3 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Notkestr 85, D-22607 Hamburg, Germany
[2] Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
关键词
partiality estimation; diffraction prediction; merging; serial snapshot crystallography; SYNCHROTRON X-RADIATION; SERIAL FEMTOSECOND CRYSTALLOGRAPHY; REFLECTING RANGE; POST-REFINEMENT; PROFILE;
D O I
10.1107/S2053273323000682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The recent diversification of macromolecular crystallographic experiments including the use of pink beams, convergent electron diffraction and serial snapshot crystallography has shown the limitations of using the Laue equations for diffraction prediction. This article gives a computationally efficient way of calculating approximate crystal diffraction patterns given varying distributions of the incoming beam, crystal shapes and other potentially hidden parameters. This approach models each pixel of a diffraction pattern and improves data processing of integrated peak intensities by enabling the correction of partially recorded reflections. The fundamental idea is to express the distributions as weighted sums of Gaussian functions. The approach is demonstrated on serial femtosecond crystallography data sets, showing a significant decrease in the required number of patterns to refine a structure to a given error.
引用
收藏
页码:145 / 162
页数:18
相关论文
共 50 条
  • [31] Bragg diffraction of a Gaussian beam in a uniaxial crystal
    Guo, Hanming
    Chen, Jiabi
    Li, Xiangning
    Zhuang, Songlin
    Guangxue Xuebao/Acta Optica Sinica, 2004, 24 (10): : 1421 - 1428
  • [32] Parameter estimation of Oscillating Gaussian functions using the scaled reassigned spectrogram
    Brynolfsson, Johan
    Sandsten, Maria
    SIGNAL PROCESSING, 2018, 150 : 20 - 32
  • [33] Evoked potential signal estimation using Gaussian radial basis function network
    Sita, G
    Ramakrishnan, AG
    ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 630 - 635
  • [34] COMP 273-Analysis of protonic and deuteronic basis functions using Gaussian-type functions
    Ishimoto, Takayoshi
    Tachikawa, Masanori
    Inadomi, Yuichi
    Umeda, Hiroaki
    Watanabe, Toshio
    Nagashima, Umpei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [35] Meixner basis functions in the problem of diffraction by a disk
    S. I. Éminov
    Technical Physics, 2007, 52 : 385 - 388
  • [36] Meixner basis functions in the problem of diffraction by a disk
    Eminov, S. I.
    TECHNICAL PHYSICS, 2007, 52 (03) : 385 - 388
  • [37] Continuous-Time Batch Estimation using Temporal Basis Functions
    Furgale, Paul
    Barfoot, Timothy D.
    Sibley, Gabe
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 2088 - 2095
  • [38] LONG-RANGE INTERMOLECULAR FORCES USING GAUSSIAN BASIS FUNCTIONS - A MODEL CALCULATION
    SINGH, TR
    MEATH, WJ
    JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (03): : 1137 - &
  • [39] NONADIABATIC VARIATIONAL CALCULATIONS ON DIPOSITRONIUM USING EXPLICITLY CORRELATED GAUSSIAN-BASIS FUNCTIONS
    KINGHORN, DB
    POSHUSTA, RD
    PHYSICAL REVIEW A, 1993, 47 (05): : 3671 - 3681
  • [40] NONLINEAR MODELING AND PREDICTION BY SUCCESSIVE APPROXIMATION USING RADIAL BASIS FUNCTIONS
    HE, XD
    LAPEDES, A
    PHYSICA D, 1994, 70 (03): : 289 - 301