Anisotropic fractional diffusion equation

被引:10
|
作者
Mendes, GA
Lenzi, EK
Mendes, RS
da Silva, LR
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072972 Natal, RN, Brazil
关键词
anomalous diffusion; fractional diffusion; nonlinear diffusion; diffusion equation;
D O I
10.1016/j.physa.2004.07.033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze an anisotropic fractional diffusion equation that extends sonic known diffusion equations by considering a diffusion coefficient with spatial and time dependence, the presence of external forces and time fractional derivatives. We obtain new exact classes of solutions for a linear anisotropic fractional diffusion equation and investigate the time scaling behavior and an asymptotic solution for a nonlinear anisotropic fractional diffusion equation. We connect the asymptotic solution obtained with the distribution that emerges from the nonextensive statistics to the nonlinear case. We also verify different diffusive behavior, for instance, subdiffusion and superdiffusion, in each direction. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 50 条
  • [41] LINEAR BOLTZMANN EQUATION AND FRACTIONAL DIFFUSION
    Bardos, Claude
    Golse, Francois
    Moyano, Ivan
    KINETIC AND RELATED MODELS, 2018, 11 (04) : 1011 - 1036
  • [42] Fractional thermal diffusion and the heat equation
    Gomez, Francisco
    Morales, Luis
    Gonzalez, Mario
    Alvarado, Victor
    Lopez, Guadalupe
    OPEN PHYSICS, 2015, 13 (01): : 170 - 176
  • [43] On fractional diffusion equation with noise perturbation
    C. S. Sridevi
    Mabel L. Rajendran
    M. Suvinthra
    International Journal of Dynamics and Control, 2024, 12 : 98 - 106
  • [44] Optimal control of fractional diffusion equation
    Mophou, Gisele. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (01) : 68 - 78
  • [45] FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION
    METZLER, R
    GLOCKLE, WG
    NONNENMACHER, TF
    PHYSICA A, 1994, 211 (01): : 13 - 24
  • [46] Apriori estimates for fractional diffusion equation
    K. Burazin
    D. Mitrovic
    Optimization Letters, 2019, 13 : 1793 - 1801
  • [47] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [48] On a time fractional reaction diffusion equation
    Ahmad, B.
    Alhothuali, M. S.
    Alsulami, H. H.
    Kirane, M.
    Timoshin, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 199 - 204
  • [49] INVERSE PROBLEM FOR FRACTIONAL DIFFUSION EQUATION
    Vu Kim Tuan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (01) : 31 - 55
  • [50] On the numerical solutions for the fractional diffusion equation
    Khader, M. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) : 2535 - 2542