Anisotropic fractional diffusion equation

被引:10
|
作者
Mendes, GA
Lenzi, EK
Mendes, RS
da Silva, LR
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072972 Natal, RN, Brazil
关键词
anomalous diffusion; fractional diffusion; nonlinear diffusion; diffusion equation;
D O I
10.1016/j.physa.2004.07.033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze an anisotropic fractional diffusion equation that extends sonic known diffusion equations by considering a diffusion coefficient with spatial and time dependence, the presence of external forces and time fractional derivatives. We obtain new exact classes of solutions for a linear anisotropic fractional diffusion equation and investigate the time scaling behavior and an asymptotic solution for a nonlinear anisotropic fractional diffusion equation. We connect the asymptotic solution obtained with the distribution that emerges from the nonextensive statistics to the nonlinear case. We also verify different diffusive behavior, for instance, subdiffusion and superdiffusion, in each direction. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 50 条
  • [21] Identify the fractional order and diffusion coefficient in a fractional diffusion wave equation
    Yan, X. B.
    Zhang, Y. X.
    Wei, T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 393
  • [22] The stability of the solutions of an anisotropic diffusion equation
    Zhan, Huashui
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (05) : 1145 - 1166
  • [23] The stability of the solutions of an anisotropic diffusion equation
    Huashui Zhan
    Letters in Mathematical Physics, 2019, 109 : 1145 - 1166
  • [24] SOLUTION OF EQUATION OF NONSTATIONARY ANISOTROPIC DIFFUSION
    SUKHOMLIN, NB
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1976, (01): : 146 - 147
  • [25] Fully fractional anisotropic diffusion for image denoising
    Janev, Marko
    Pilipovic, Stevan
    Atanackovic, Teodor
    Obradovic, Radovan
    Ralevic, Nebojsa
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) : 729 - 741
  • [26] Similarity Solution for Fractional Diffusion Equation
    Duan, Jun-Sheng
    Guo, Ai-Ping
    Yun, Wen-Zai
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [27] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [28] A fractional diffusion equation with sink term
    dos Santos, M. A. F.
    INDIAN JOURNAL OF PHYSICS, 2020, 94 (07) : 1123 - 1133
  • [29] Identification of the diffusion coefficient in a time fractional diffusion equation
    Shayegan, Amir Hossein Salehi
    Zakeri, Ali
    Bodaghi, Soheila
    Heshmati, M.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (02): : 299 - 306
  • [30] Inverse problem for fractional diffusion equation
    Vu Kim Tuan
    Fractional Calculus and Applied Analysis, 2011, 14 : 31 - 55