Policy Iteration Approach to the Infinite Horizon Average Optimal Control of Probabilistic Boolean Networks

被引:112
|
作者
Wu, Yuhu [1 ,2 ]
Guo, Yuqian [3 ]
Toyoda, Mitsuru [4 ]
机构
[1] Dalian Univ Technol, Ind Equipment Minist Educ, Key Lab Intelligent Control & Optimizat, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[3] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[4] Tokyo Metropolitan Univ, Dept Mech Syst Engn, Tokyo 1910065, Japan
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Optimal control; Probabilistic logic; Optimization; Biological system modeling; Signal processing algorithms; Heuristic algorithms; Boolean networks (BNs); infinite horizon problem; logical networks; optimal control; probabilistic BNs (PBNs); semitensor product (STP) of matrix; L-ARABINOSE OPERON; MODEL; EXPRESSION; STABILITY; ALGORITHM; DESIGN;
D O I
10.1109/TNNLS.2020.3008960
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article studies the optimal control of probabilistic Boolean control networks (PBCNs) with the infinite horizon average cost criterion. By resorting to the semitensor product (STP) of matrices, a nested optimality equation for the optimal control problem of PBCNs is proposed. The Laurent series expression technique and the Jordan decomposition method derive a novel policy iteration-type algorithm, where finite iteration steps can provide the optimal state feedback law, which is presented. Finally, the intervention problem of the probabilistic Ara operon in E. coil, as a biological application, is solved to demonstrate the effectiveness and feasibility of the proposed theoretical approach and algorithms.
引用
收藏
页码:2910 / 2924
页数:15
相关论文
共 50 条
  • [41] Finite Horizon Tracking Control of Boolean Control Networks
    Zhang, Zhihua
    Leifeld, Thomas
    Zhang, Ping
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (06) : 1798 - 1805
  • [42] Optimal Control of Steady-state Probability Distributions of Probabilistic Boolean Networks
    Yang Meng
    Li Rui
    Chu Tianguang
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 2269 - 2274
  • [43] On Optimal Time-Varying Feedback Controllability for Probabilistic Boolean Control Networks
    Toyoda, Mitsuru
    Wu, Yuhu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (06) : 2202 - 2208
  • [44] Markov decision processes based optimal control policies for probabilistic boolean networks
    Abul, O
    Alhajj, R
    Polat, F
    BIBE 2004: FOURTH IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, PROCEEDINGS, 2004, : 337 - 344
  • [45] ON THE OPTIMAL CONTROL OF BOOLEAN CONTROL NETWORKS
    Zhu, Qunxi
    Liu, Yang
    Lu, Jianquan
    Cao, Jinde
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) : 1321 - 1341
  • [46] Optimal Control of Boolean Control Networks
    Fornasini, Ettore
    Valcher, Maria Elena
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (05) : 1258 - 1270
  • [47] On infinite linear programming and the moment approach to deterministic infinite horizon discounted optimal control problems
    Kamoutsi, Angeliki
    Sutter, Tobias
    Esfahani, Peyman Mohajerin
    Lygeros, John
    arXiv, 2017,
  • [48] Analyzing Policy Iteration in Optimal Control
    Heydari, Ali
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5728 - 5733
  • [49] PROBLEMS OF OPTIMAL INFINITE-HORIZON CONTROL
    PIUNOVSKIY, AB
    SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1990, 28 (06): : 65 - 71
  • [50] On infinite-horizon optimal control problems
    Effati, S
    Kamyad, V
    Kamyabi-Gol, RA
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (01): : 269 - 278