Policy Iteration Approach to the Infinite Horizon Average Optimal Control of Probabilistic Boolean Networks

被引:112
|
作者
Wu, Yuhu [1 ,2 ]
Guo, Yuqian [3 ]
Toyoda, Mitsuru [4 ]
机构
[1] Dalian Univ Technol, Ind Equipment Minist Educ, Key Lab Intelligent Control & Optimizat, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[3] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[4] Tokyo Metropolitan Univ, Dept Mech Syst Engn, Tokyo 1910065, Japan
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Optimal control; Probabilistic logic; Optimization; Biological system modeling; Signal processing algorithms; Heuristic algorithms; Boolean networks (BNs); infinite horizon problem; logical networks; optimal control; probabilistic BNs (PBNs); semitensor product (STP) of matrix; L-ARABINOSE OPERON; MODEL; EXPRESSION; STABILITY; ALGORITHM; DESIGN;
D O I
10.1109/TNNLS.2020.3008960
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article studies the optimal control of probabilistic Boolean control networks (PBCNs) with the infinite horizon average cost criterion. By resorting to the semitensor product (STP) of matrices, a nested optimality equation for the optimal control problem of PBCNs is proposed. The Laurent series expression technique and the Jordan decomposition method derive a novel policy iteration-type algorithm, where finite iteration steps can provide the optimal state feedback law, which is presented. Finally, the intervention problem of the probabilistic Ara operon in E. coil, as a biological application, is solved to demonstrate the effectiveness and feasibility of the proposed theoretical approach and algorithms.
引用
收藏
页码:2910 / 2924
页数:15
相关论文
共 50 条
  • [21] Optimal Control for Generalized Asynchronous Probabilistic Boolean Networks
    Liu, Qiuli
    Guo, Xianping
    Zhou, Tianshou
    CURRENT BIOINFORMATICS, 2012, 7 (01) : 56 - 62
  • [22] The set stabilization problem for Markovian jump Boolean control networks: An average optimal control approach
    Zhu, Sanmei
    Feng, Jun-e
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
  • [23] Online Policy Iteration Based Algorithms to Solve the Continuous-Time Infinite Horizon Optimal Control Problem
    Vamvoudakis, Kyriakos
    Vrabie, Draguna
    Lewis, Frank
    ADPRL: 2009 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING, 2009, : 36 - 41
  • [24] Finite-Horizon Optimal Control of Boolean Control Networks: A Unified Graph-Theoretical Approach
    Gao, Shuhua
    Sun, Changkai
    Xiang, Cheng
    Qin, Kairong
    Lee, Tong Heng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (01) : 157 - 171
  • [25] OPTIMAL INFINITE-HORIZON UNDISCOUNTED CONTROL OF FINITE PROBABILISTIC SYSTEMS
    PLATZMAN, LK
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1980, 18 (04) : 362 - 380
  • [26] Optimal Control of Probabilistic Boolean Networks Using Polynomial Optimization
    Kobayashi, Koichi
    Hiraishi, Kunihiko
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (09) : 1512 - 1517
  • [27] Optimal Reconstruction of Probabilistic Boolean Networks
    Wu, Jiahao
    Liu, Yang
    Lu, Jianquan
    Gui, Weihua
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (12) : 7656 - 7667
  • [28] An integer programming approach to optimal control problems in context-sensitive probabilistic Boolean networks
    Kobayashi, Koichi
    Hiraishi, Kunihiko
    AUTOMATICA, 2011, 47 (06) : 1260 - 1264
  • [29] Optimal control in infinite horizon problems: a Sobolev space approach
    Le Van, Cuong
    Boucekkine, Raouf
    Saglam, Cagri
    ECONOMIC THEORY, 2007, 32 (03) : 497 - 509
  • [30] Optimal Control in Infinite Horizon Problems: A Sobolev Space Approach
    Cuong Le Van
    Raouf Boucekkine
    Cagri Saglam
    Economic Theory, 2007, 32 : 497 - 509