Policy Iteration Approach to the Infinite Horizon Average Optimal Control of Probabilistic Boolean Networks

被引:112
|
作者
Wu, Yuhu [1 ,2 ]
Guo, Yuqian [3 ]
Toyoda, Mitsuru [4 ]
机构
[1] Dalian Univ Technol, Ind Equipment Minist Educ, Key Lab Intelligent Control & Optimizat, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[3] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[4] Tokyo Metropolitan Univ, Dept Mech Syst Engn, Tokyo 1910065, Japan
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Optimal control; Probabilistic logic; Optimization; Biological system modeling; Signal processing algorithms; Heuristic algorithms; Boolean networks (BNs); infinite horizon problem; logical networks; optimal control; probabilistic BNs (PBNs); semitensor product (STP) of matrix; L-ARABINOSE OPERON; MODEL; EXPRESSION; STABILITY; ALGORITHM; DESIGN;
D O I
10.1109/TNNLS.2020.3008960
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article studies the optimal control of probabilistic Boolean control networks (PBCNs) with the infinite horizon average cost criterion. By resorting to the semitensor product (STP) of matrices, a nested optimality equation for the optimal control problem of PBCNs is proposed. The Laurent series expression technique and the Jordan decomposition method derive a novel policy iteration-type algorithm, where finite iteration steps can provide the optimal state feedback law, which is presented. Finally, the intervention problem of the probabilistic Ara operon in E. coil, as a biological application, is solved to demonstrate the effectiveness and feasibility of the proposed theoretical approach and algorithms.
引用
收藏
页码:2910 / 2924
页数:15
相关论文
共 50 条
  • [1] Optimal control of probabilistic Boolean control networks: A scalable infinite horizon approach
    Kharade, Sonam
    Sutavani, Sarang
    Wagh, Sushama
    Yerudkar, Amol
    Del Vecchio, Carmen
    Singh, Navdeep
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (09) : 4945 - 4966
  • [2] Optimal infinite horizon control for probabilistic Boolean networks
    Pal, Ranadip
    Datta, Aniruddha
    Dougherty, Edward R.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 668 - +
  • [3] Optimal control of Boolean control networks with average cost: A policy iteration approach
    Wu, Yuhu
    Sun, Xi-Ming
    Zhao, Xudong
    Shen, Tielong
    AUTOMATICA, 2019, 100 : 378 - 387
  • [4] Policy Iteration Approach to Average Optimal Control Problems for Boolean Control Networks
    Wu, Yuhu
    Sun, Ximing
    Wang, Wei
    Shen, Tielong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 7990 - 7995
  • [5] Optimal infinite-horizon control for probabilistic Boolean networks
    Pal, Ranadip
    Datta, Aniruddha
    Dougherty, Edward R.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (06) : 2375 - 2387
  • [6] Infinite-Horizon Optimal Control of Switched Boolean Control Networks With Average Cost: An Efficient Graph-Theoretical Approach
    Gao, Shuhua
    Sun, Changkai
    Xiang, Cheng
    Qin, Kairong
    Lee, Tong Heng
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2314 - 2328
  • [7] An optimal control approach to probabilistic Boolean networks
    Liu, Qiuli
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (24) : 6682 - 6689
  • [8] Optimal control policy for probabilistic Boolean networks with hard constraints
    Ching, W. -K.
    Zhang, S. -Q.
    Jiao, Y.
    Akutsu, T.
    Tsing, N. -K.
    Wong, A. S.
    IET SYSTEMS BIOLOGY, 2009, 3 (02) : 90 - 99
  • [9] Optimal finite-horizon control for Probabilistic boolean networks with hard constraints
    Ching, Wai-Ki
    Zhang, Shu-Qin
    Jiao, Yue
    Akutsu, Tatsuya
    Wong, Alice S.
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 21 - +
  • [10] Optimal control for probabilistic Boolean networks
    Liu, Q.
    Guo, X.
    Zhou, T.
    IET SYSTEMS BIOLOGY, 2010, 4 (02) : 99 - 107