A Hybrid Evolutionary Algorithm, Utilizing Novelty Search and Local Optimization, Used to Design Convolutional Neural Networks for Handwritten Digit Recognition

被引:0
|
作者
Ashfaq, Tabish [1 ]
Ramesh, Nivedha [1 ]
Kharma, Nawwaf [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Neuroevolution; Evolutionary Algorithms; Convolutional Neural Networks; Deep Learning; Cartesian Genetic Programming; Genetic Algorithms; Stochastic Local Search; Novelty Search; Simulated Annealing; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; ARCHITECTURES;
D O I
10.5220/0010648300003063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNNs) are deep learning models that have been successfully applied to various computer vision tasks. The design of CNN topologies often requires extensive domain knowledge and a high degree of trial and error. In recent years, numerous Evolutionary Algorithms (EAs) have been proposed to automate the design of CNNs. The search space of these EAs is very large and often deceptive, which entails great computational cost. In this work, we investigate the design of CNNs using Cartesian Genetic Programming (CGP), an EA variant. We then augment the basic CGP with methods for identifying potential/actual local optima within the solution space (via Novelty Search), followed by further local optimization of each of the optima (via Simulated Annealing). This hybrid EA methodology is evaluated using the MNIST data-set for handwritten digit recognition. We demonstrate that the use of the proposed method results in considerable reduction of computational effort, when compared to the basic CGP approach, while still returning competitive results. Also, the CNNs designed by our method achieve competitive recognition results compared to other neuroevolutionary methods.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 50 条
  • [1] Cascaded Heterogeneous Convolutional Neural Networks for Handwritten Digit Recognition
    Wu, Chunpeng
    Fan, Wei
    He, Yuan
    Sun, Jun
    Naoi, Satoshi
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 657 - 660
  • [2] Residual Neural Network Vs Local Binary Convolutional Neural Networks for Bilingual Handwritten Digit Recognition
    Al-wajih, Ebrahim
    Ghazali, Rozaida
    Hassim, Yana Mazwin Mohmad
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2020), 2020, 978 : 25 - 34
  • [3] Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN)
    Ahlawat, Savita
    Choudhary, Amit
    Nayyar, Anand
    Singh, Saurabh
    Yoon, Byungun
    SENSORS, 2020, 20 (12) : 1 - 18
  • [4] Persian Handwritten Digit Recognition by Random Forest and Convolutional Neural Networks
    Zamani, Yasin
    Souri, Yaser
    Rashidi, Hossein
    Kasaei, Shohreh
    2015 9TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2015, : 37 - 40
  • [5] Threshold center-symmetric local binary convolutional neural networks for bilingual handwritten digit recognition
    Al-wajih, Ebrahim
    Ghazali, Rozaida
    KNOWLEDGE-BASED SYSTEMS, 2023, 259
  • [6] Adhesive Handwritten Digit Recognition Algorithm Based on Improved Convolutional Neural Network
    Tang, Junyi
    Han, Ping
    Liu, Dong
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2020, : 388 - 392
  • [7] Understanding Convolutional Neural Networks Using A Minimal Model for Handwritten Digit Recognition
    Teow, Matthew Y. W.
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2017, : 167 - 172
  • [8] An Efficient Handwritten Digit Recognition Based on Convolutional Neural Networks with Orthogonal Learning Strategies
    Senthil, T.
    Rajan, C.
    Deepika, J.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [9] Bayanno-Net: Bangla Handwritten Digit Recognition using Convolutional Neural Networks
    Islam, Mohammad Shakirul
    Fovsal, Md. Ferdouse Ahmed
    Noori, Shcak Rasped Haider
    PROCEEDINGS OF 2019 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2019, : 23 - 27
  • [10] Hybrid optimization of feedforward neural networks for handwritten character recognition
    Utschick, W
    Nossek, JA
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 147 - 150