Cascaded Heterogeneous Convolutional Neural Networks for Handwritten Digit Recognition

被引:0
|
作者
Wu, Chunpeng [1 ]
Fan, Wei [1 ]
He, Yuan [1 ]
Sun, Jun [1 ]
Naoi, Satoshi [1 ]
机构
[1] Fujitsu Res & Dev Ctr Co Ltd, Beijing 100025, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a handwritten digit recognition method based on cascaded heterogeneous convolutional neural networks (CNNs). The reliability and complementation of heterogeneous CNNs are investigated in our method. Each CNN recognizes a proportion of input samples with high-confidence, and feeds the rejected samples into the next CNN. The samples rejected by the last CNN are recognized by a voting committee of all CNNs. Experiments on MNIST dataset show that our method achieves an error rate 0.23% using only 5 CNNs, on par with human vision system. Using heterogeneous networks can reduce the number of CNNs needed to reach certain performance compared with networks built from the same type. Further improvements include fine-tuning the rejection threshold of each CNN and adding CNNs of more types.
引用
收藏
页码:657 / 660
页数:4
相关论文
共 50 条
  • [1] Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN)
    Ahlawat, Savita
    Choudhary, Amit
    Nayyar, Anand
    Singh, Saurabh
    Yoon, Byungun
    SENSORS, 2020, 20 (12) : 1 - 18
  • [2] A Convolutional Neural Network for Handwritten Digit Recognition
    Guevara Neri, Maria Cristina
    Vergara Villegas, Osslan Osiris
    Cruz Sanchez, Vianey Guadalupe
    Nandayapa, Manuel
    Sossa Azuela, Juan Humberto
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2020, 11 (01): : 97 - 105
  • [3] Persian Handwritten Digit Recognition by Random Forest and Convolutional Neural Networks
    Zamani, Yasin
    Souri, Yaser
    Rashidi, Hossein
    Kasaei, Shohreh
    2015 9TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2015, : 37 - 40
  • [4] Understanding Convolutional Neural Networks Using A Minimal Model for Handwritten Digit Recognition
    Teow, Matthew Y. W.
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2017, : 167 - 172
  • [5] Handwritten Digit Recognition Based on Convolutional Neural Network
    Zhang, Chao
    Zhou, Zhiyao
    Lin, Lan
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7384 - 7388
  • [6] Handwritten digit recognition with fuzzy neural networks
    Zhao, Hongyu
    Ye, Wenxia
    Jin, Fan
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 1997, 32 (03): : 247 - 252
  • [7] An Efficient Handwritten Digit Recognition Based on Convolutional Neural Networks with Orthogonal Learning Strategies
    Senthil, T.
    Rajan, C.
    Deepika, J.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [8] Bayanno-Net: Bangla Handwritten Digit Recognition using Convolutional Neural Networks
    Islam, Mohammad Shakirul
    Fovsal, Md. Ferdouse Ahmed
    Noori, Shcak Rasped Haider
    PROCEEDINGS OF 2019 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2019, : 23 - 27
  • [9] Handwritten Digit String Recognition using Convolutional Neural Network
    Zhan, Hongjian
    Lyu, Shujing
    Lu, Yue
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3729 - 3734
  • [10] Bangla Handwritten Digit Recognition Using Convolutional Neural Network
    Rabby, A. K. M. Shahariar Azad
    Abujar, Sheikh
    Haque, Sadeka
    Hossain, Syed Akhter
    EMERGING TECHNOLOGIES IN DATA MINING AND INFORMATION SECURITY, IEMIS 2018, VOL 1, 2019, 755 : 111 - 122