Cascaded Heterogeneous Convolutional Neural Networks for Handwritten Digit Recognition

被引:0
|
作者
Wu, Chunpeng [1 ]
Fan, Wei [1 ]
He, Yuan [1 ]
Sun, Jun [1 ]
Naoi, Satoshi [1 ]
机构
[1] Fujitsu Res & Dev Ctr Co Ltd, Beijing 100025, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a handwritten digit recognition method based on cascaded heterogeneous convolutional neural networks (CNNs). The reliability and complementation of heterogeneous CNNs are investigated in our method. Each CNN recognizes a proportion of input samples with high-confidence, and feeds the rejected samples into the next CNN. The samples rejected by the last CNN are recognized by a voting committee of all CNNs. Experiments on MNIST dataset show that our method achieves an error rate 0.23% using only 5 CNNs, on par with human vision system. Using heterogeneous networks can reduce the number of CNNs needed to reach certain performance compared with networks built from the same type. Further improvements include fine-tuning the rejection threshold of each CNN and adding CNNs of more types.
引用
收藏
页码:657 / 660
页数:4
相关论文
共 50 条
  • [41] Genetic selection of multilayer neural networks for handwritten digit recognition to aid the blind
    Perez, CA
    Holzmann, CA
    Diaz, EA
    PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 1133 - 1135
  • [42] Very Deep Neural Networks for Hindi/Arabic Offline Handwritten Digit Recognition
    Almodfer, Rolla
    Xiong, Shengwu
    Mudhsh, Mohammed
    Duan, Pengfei
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 450 - 459
  • [43] Unconstrained handwritten digit VLSI recognition system based on combined neural networks
    Li, GX
    Shi, BX
    1998 5TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY PROCEEDINGS, 1998, : 348 - 351
  • [44] A Novel Deep Convolutional Neural Network Structure for Off-line Handwritten Digit Recognition
    Wen, Yan
    Shao, Yi
    Zheng, Dabo
    PROCEEDINGS OF 2019 2ND INTERNATIONAL CONFERENCE ON BIG DATA TECHNOLOGIES (ICBDT 2019), 2019, : 216 - 220
  • [45] Ncfm: Accurate Handwritten Digits Recognition using Convolutional Neural Networks
    Yin, Yan
    Wu, JunMin
    Zheng, HuanXin
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 525 - 531
  • [46] The Handwritten Chinese Character Recognition Uses Convolutional Neural Networks with the GoogLeNet
    Bi, Ning
    Chen, Jiahao
    Tan, Jun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (11)
  • [47] Handwritten Tifinagh Characters Recognition Using Deep Convolutional Neural Networks
    Mohamed Benaddy
    Othmane El Meslouhi
    Youssef Es-saady
    Mustapha Kardouchi
    Sensing and Imaging, 2019, 20
  • [48] Recognition of Online Handwritten Gurmukhi Strokes using Convolutional Neural Networks
    Budhouliya, Rishabh
    Sharma, Rajendra Kumar
    Singh, Harjeet
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2020, : 578 - 586
  • [49] Handwritten Music Recognition for Mensural notation with convolutional recurrent neural networks
    Calvo-Zaragoza, Jorge
    Toselli, Alejandro H.
    Vidal, Enrique
    PATTERN RECOGNITION LETTERS, 2019, 128 : 115 - 121
  • [50] The Handwritten Chinese Character Recognition use Convolutional neural networks with the GoogLenet
    Chen, Jiahao
    Bi, Bing
    Yang, Kang
    Tan, Jun
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 2 - 7