A Hybrid Evolutionary Algorithm, Utilizing Novelty Search and Local Optimization, Used to Design Convolutional Neural Networks for Handwritten Digit Recognition

被引:0
|
作者
Ashfaq, Tabish [1 ]
Ramesh, Nivedha [1 ]
Kharma, Nawwaf [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Neuroevolution; Evolutionary Algorithms; Convolutional Neural Networks; Deep Learning; Cartesian Genetic Programming; Genetic Algorithms; Stochastic Local Search; Novelty Search; Simulated Annealing; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; ARCHITECTURES;
D O I
10.5220/0010648300003063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNNs) are deep learning models that have been successfully applied to various computer vision tasks. The design of CNN topologies often requires extensive domain knowledge and a high degree of trial and error. In recent years, numerous Evolutionary Algorithms (EAs) have been proposed to automate the design of CNNs. The search space of these EAs is very large and often deceptive, which entails great computational cost. In this work, we investigate the design of CNNs using Cartesian Genetic Programming (CGP), an EA variant. We then augment the basic CGP with methods for identifying potential/actual local optima within the solution space (via Novelty Search), followed by further local optimization of each of the optima (via Simulated Annealing). This hybrid EA methodology is evaluated using the MNIST data-set for handwritten digit recognition. We demonstrate that the use of the proposed method results in considerable reduction of computational effort, when compared to the basic CGP approach, while still returning competitive results. Also, the CNNs designed by our method achieve competitive recognition results compared to other neuroevolutionary methods.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 50 条
  • [11] Hybrid neural networks: An evolutionary approach with local search
    Iyoda, EM
    Von Zuben, FJ
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2002, 9 (01) : 57 - 72
  • [12] BDNet: Bengali Handwritten Numeral Digit Recognition based on Densely connected Convolutional Neural Networks
    Sufian, Abu
    Ghosh, Anirudha
    Naskar, Avijit
    Sultana, Farhana
    Sil, Jaya
    Rahman, M. M. Hafizur
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) : 2610 - 2620
  • [13] Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization
    Kulkarni, Shruti R.
    Rajendran, Bipin
    NEURAL NETWORKS, 2018, 103 : 118 - 127
  • [14] Hybrid evolutionary approach for Devanagari handwritten numeral recognition using Convolutional Neural Network
    Trivedi, Adarsh
    Srivastava, Siddhant
    Mishra, Apoorva
    Shukla, Anupam
    Tiwari, Ritu
    6TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS, 2018, 125 : 525 - 532
  • [15] A Hybrid Algorithm for Electromagnetic Optimization Utilizing Neural Networks
    Liu, Yanan
    Lu, Tianjian
    Wu, Ken
    Jin, Jian-Ming
    2018 IEEE 27TH CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS (EPEPS), 2018, : 261 - 263
  • [16] A hybrid optimization technique coupling an evolutionary and a local search algorithm
    Kelner, Vincent
    Capitanescu, Florin
    Uonard, Olivier
    Wehenkel, Louis
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 215 (02) : 448 - 456
  • [17] Adaptive Local Receptive Field Convolutional Neural Networks for Handwritten Chinese Character Recognition
    Chen, Li
    Wu, Chunpeng
    Fan, Wei
    Sun, Jun
    Satoshi, Naoi
    PATTERN RECOGNITION (CCPR 2014), PT II, 2014, 484 : 455 - 463
  • [18] Quantum-Inspired Evolutionary Algorithm for Convolutional Neural Networks Architecture Search
    Ye, Weiliang
    Liu, Ruijiao
    Li, Yangyang
    Jiao, Licheng
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [19] Efficient local search in imaging optimization problems with the hybrid evolutionary algorithm
    Maslov, I
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL VI, PROCEEDINGS: IMAGE, ACOUSTIC, SIGNAL PROCESSING AND OPTICAL SYSTEMS, TECHNOLOGIES AND APPLICATIONS, 2004, : 289 - 293
  • [20] Performance analysis of hybrid deep learning framework using a vision transformer and convolutional neural network for handwritten digit recognition
    Agrawal, Vanita
    Jagtap, Jayant
    Patil, Shruti
    Kotecha, Ketan
    METHODSX, 2024, 12