Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution

被引:361
|
作者
Li, Bin [1 ]
Zhang, Wen [1 ,2 ]
Guo, Chuang [1 ]
Xu, Hao [1 ,2 ]
Li, Longfei [3 ]
Fang, Minghao [3 ]
Hu, Yinlei [4 ]
Zhang, Xinye [3 ]
Yao, Xinfeng [1 ]
Tang, Meifang [1 ]
Liu, Ke [1 ]
Zhao, Xuetong [5 ]
Lin, Jun [1 ,2 ]
Cheng, Linzhao [3 ]
Chen, Falai [4 ]
Xue, Tian [3 ]
Qu, Kun [1 ,2 ,6 ]
机构
[1] Univ Sci & Technol China, Affiliated Hosp 1, Sch Basic Med Sci, Dept Oncol,USTC,Div Life Sci & Med, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Univ Sci & Technol China, Div Life Sci & Med, Hefei, Peoples R China
[4] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
[5] Chinese Acad Sci, Inst Microbiol, CAS Key Lab Microbial Physiol & Metab Engn, Beijing, Peoples R China
[6] Univ Sci & Technol China, CAS Ctr Excellence Mol Cell Sci, CAS Key Lab Innate Immun & Chron Dis, Hefei, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; GENE-EXPRESSION; ATLAS; VISUALIZATION;
D O I
10.1038/s41592-022-01480-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets. This work presents a comprehensive benchmarking analysis of computational methods that integrates spatial and single-cell transcriptomics data for transcript distribution prediction and cell type deconvolution.
引用
收藏
页码:662 / +
页数:28
相关论文
共 50 条
  • [41] STIE: Single-cell level deconvolution, convolution, and clustering in in situ capturing-based spatial transcriptomics
    Zhu, Shijia
    Kubota, Naoto
    Wang, Shidan
    Wang, Tao
    Xiao, Guanghua
    Hoshida, Yujin
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [42] Robust Spatial Cell-Type Deconvolution with Qualitative Reference for Spatial Transcriptomics
    Dong, Qishi
    Yang, Yi
    Luo, Ziye
    Shen, Haipeng
    Shi, Xingjie
    Liu, Jin
    SMALL METHODS, 2025,
  • [43] Benchmarking cell type annotation methods for 10x Xenium spatial transcriptomics data
    Cheng, Jinming
    Jin, Xinyi
    Smyth, Gordon K.
    Chen, Yunshun
    BMC BIOINFORMATICS, 2025, 26 (01):
  • [44] RNA visualization and single-cell transcriptomics: methods and applications
    Andrysik, Zdenek
    Donovan, Micah G.
    TRANSCRIPTION-AUSTIN, 2023, 14 (3-5): : 89 - 91
  • [45] Clinical, cell-type, and architectural characterization of AFX and PDS using single-cell and spatial transcriptomics
    Klein, J. C.
    Hosler, G.
    Hon, G.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2024, 144 (08) : S144 - S144
  • [46] A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data
    Sun, Yidi
    Kong, Lingling
    Huang, Jiayi
    Deng, Hongyan
    Bian, Xinling
    Li, Xingfeng
    Cui, Feifei
    Dou, Lijun
    Cao, Chen
    Zou, Quan
    Zhang, Zilong
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2024,
  • [47] Benchmarking cross-species single-cell RNA-seq data integration methods: towards a cell type tree of life
    Zhong, Huawen
    Han, Wenkai
    Gomez-Cabrero, David
    Tegner, Jesper
    Gao, Xin
    Cui, Guoxin
    Aranda, Manuel
    NUCLEIC ACIDS RESEARCH, 2025, 53 (01)
  • [48] Single-cell spatial explorer: easy exploration of spatial and multimodal transcriptomics
    Frédéric Pont
    Juan Pablo Cerapio
    Pauline Gravelle
    Laetitia Ligat
    Carine Valle
    Emeline Sarot
    Marion Perrier
    Frédéric Lopez
    Camille Laurent
    Jean Jacques Fournié
    Marie Tosolini
    BMC Bioinformatics, 24
  • [49] Comprehensive visualization of cell-cell interactions in single-cell and spatial transcriptomics with NICHES
    Raredon, Micha Sam Brickman
    Yang, Junchen
    Kothapalli, Neeharika
    Lewis, Wesley
    Kaminski, Naftali
    Niklason, Laura E.
    Kluger, Yuval
    BIOINFORMATICS, 2023, 39 (01)
  • [50] Single-cell spatial explorer: easy exploration of spatial and multimodal transcriptomics
    Pont, Frederic
    Cerapio, Juan Pablo
    Gravelle, Pauline
    Ligat, Laetitia
    Valle, Carine
    Sarot, Emeline
    Perrier, Marion
    Lopez, Frederic
    Laurent, Camille
    Fournie, Jean Jacques
    Tosolini, Marie
    BMC BIOINFORMATICS, 2023, 24 (01)