Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution

被引:361
|
作者
Li, Bin [1 ]
Zhang, Wen [1 ,2 ]
Guo, Chuang [1 ]
Xu, Hao [1 ,2 ]
Li, Longfei [3 ]
Fang, Minghao [3 ]
Hu, Yinlei [4 ]
Zhang, Xinye [3 ]
Yao, Xinfeng [1 ]
Tang, Meifang [1 ]
Liu, Ke [1 ]
Zhao, Xuetong [5 ]
Lin, Jun [1 ,2 ]
Cheng, Linzhao [3 ]
Chen, Falai [4 ]
Xue, Tian [3 ]
Qu, Kun [1 ,2 ,6 ]
机构
[1] Univ Sci & Technol China, Affiliated Hosp 1, Sch Basic Med Sci, Dept Oncol,USTC,Div Life Sci & Med, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Univ Sci & Technol China, Div Life Sci & Med, Hefei, Peoples R China
[4] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
[5] Chinese Acad Sci, Inst Microbiol, CAS Key Lab Microbial Physiol & Metab Engn, Beijing, Peoples R China
[6] Univ Sci & Technol China, CAS Ctr Excellence Mol Cell Sci, CAS Key Lab Innate Immun & Chron Dis, Hefei, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; GENE-EXPRESSION; ATLAS; VISUALIZATION;
D O I
10.1038/s41592-022-01480-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets. This work presents a comprehensive benchmarking analysis of computational methods that integrates spatial and single-cell transcriptomics data for transcript distribution prediction and cell type deconvolution.
引用
收藏
页码:662 / +
页数:28
相关论文
共 50 条
  • [31] Embryo-scale, single-cell spatial transcriptomics
    Srivatsan, Sanjay R.
    Regier, Mary C.
    Barkan, Eliza
    Franks, Jennifer M.
    Packer, Jonathan S.
    Grosjean, Parker
    Duran, Madeleine
    Saxton, Sarah
    Ladd, Jon J.
    Spielmann, Malte
    Lois, Carlos
    Lampe, Paul D.
    Shendure, Jay
    Stevens, Kelly R.
    Trapnell, Cole
    SCIENCE, 2021, 373 (6550) : 111 - +
  • [32] Liver in infections: a single-cell and spatial transcriptomics perspective
    Ju Zou
    Jie Li
    Xiao Zhong
    Daolin Tang
    Xuegong Fan
    Ruochan Chen
    Journal of Biomedical Science, 30
  • [33] Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids
    Susanne C. van den Brink
    Anna Alemany
    Vincent van Batenburg
    Naomi Moris
    Marloes Blotenburg
    Judith Vivié
    Peter Baillie-Johnson
    Jennifer Nichols
    Katharina F. Sonnen
    Alfonso Martinez Arias
    Alexander van Oudenaarden
    Nature, 2020, 582 : 405 - 409
  • [34] Embryo-scale, single-cell spatial transcriptomics
    Srivatsan, S.
    Regier, M.
    Barkan, E.
    Packer, J.
    Grosjean, P.
    Saxton, S.
    Ladd, J.
    Spielmann, M.
    Lampe, P.
    Shendure, J.
    Stevens, K.
    Trapnell, C.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 9 - 9
  • [35] Single-cell spatial transcriptomics analysis of a regenerating liver
    Monga, Satdarshan P.
    Ko, Sungjin
    Hu, Shikai
    Singh, Sucha
    Poddar, Minakshi
    FASEB JOURNAL, 2022, 36
  • [36] Encoding Method of Single-cell Spatial Transcriptomics Sequencing
    Zhou, Ying
    Jia, Erteng
    Pan, Min
    Zhao, Xiangwei
    Ge, Qinyu
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2020, 16 (14): : 2663 - 2674
  • [37] Liver in infections: a single-cell and spatial transcriptomics perspective
    Zou, Ju
    Li, Jie
    Zhong, Xiao
    Tang, Daolin
    Fan, Xuegong
    Chen, Ruochan
    JOURNAL OF BIOMEDICAL SCIENCE, 2023, 30 (01)
  • [38] Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics
    Gulati, Gunsagar S.
    D'Silva, Jeremy Philip
    Liu, Yunhe
    Wang, Linghua
    Newman, Aaron M.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2025, 26 (01) : 11 - 31
  • [39] Single-cell and spatial transcriptomics during human organogenesis
    Xu, Yichi
    Shi, Weiyang
    NATURE CELL BIOLOGY, 2023, 25 (04) : 522 - 523
  • [40] Single-cell and spatial transcriptomics during human organogenesis
    Nature Cell Biology, 2023, 25 : 522 - 523