Weakly η-Einstein Contact Manifolds

被引:0
|
作者
Cho, Jong Taek [1 ]
Chun, Sun Hyang [2 ]
Euh, Yunhee [3 ]
机构
[1] Chonnam Natl Univ, Dept Math, Gwangju 61186, South Korea
[2] Chosun Univ, Dept Math, Gwangju 61452, South Korea
[3] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Weakly eta-Einstein; (k; mu)-space; unit tangent sphere bundle;
D O I
10.1007/s00025-022-01645-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the notion of weakly eta-Einstein structure. Then we prove that a 3-dimensional eta-Einstein almost contact metric manifold is weakly eta-Einstein. Moreover, the generalized Sasakian space forms are weakly eta-Einstein. Furthermore, we obtain the characteristic equation for a non-Sasakian contact (k, mu)-space to be weakly eta-Einstein, which provides many interesting examples. In particular, we determine the base manifold whose unit tangent sphere bundle T1M(c) is weakly eta-Einstein.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Generalized m-Quasi-Einstein Metric on Certain Almost Contact Manifolds
    Singh, Jay Prakash
    Khatri, Mohan
    FILOMAT, 2022, 36 (20) : 6991 - 6999
  • [42] On non-gradient (m, ρ)-quasi-Einstein contact metric manifolds
    Rovenski, Vladimir
    Patra, Dhriti Sundar
    JOURNAL OF GEOMETRY, 2021, 112 (01)
  • [43] Generalized Ricci solitons and Einstein metrics on weak K-contact manifolds
    Rovenski, Vladimir
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (02): : 177 - 188
  • [44] WEAKLY-EINSTEIN CONDITIONS OVER LOCALLY CONFORMALLY FLAT LORENTZIAN THREE-MANIFOLDS
    Atashpeykar, Parvane
    Zaeim, Amirhesam
    Haji-badali, Ali
    REPORTS ON MATHEMATICAL PHYSICS, 2023, 91 (02) : 183 - 198
  • [45] A note on η-Einstein manifolds
    Bejan, C. -L.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 261 - 265
  • [46] HYPERSURFACES OF EINSTEIN MANIFOLDS
    KOISO, N
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1981, 14 (04): : 433 - 443
  • [47] Anatomy of Einstein manifolds
    Park, Jongmin
    Shin, Jaewon
    Yang, Hyun Seok
    PHYSICAL REVIEW D, 2022, 105 (06)
  • [48] On the stability of Einstein manifolds
    Klaus Kröncke
    Annals of Global Analysis and Geometry, 2015, 47 : 81 - 98
  • [49] On Einstein Hermitian manifolds
    Kim, Jaeman
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (03): : 251 - 254
  • [50] On Einstein Hermitian manifolds
    Jaeman Kim
    Monatshefte für Mathematik, 2007, 152 : 251 - 254