Weakly η-Einstein Contact Manifolds

被引:0
|
作者
Cho, Jong Taek [1 ]
Chun, Sun Hyang [2 ]
Euh, Yunhee [3 ]
机构
[1] Chonnam Natl Univ, Dept Math, Gwangju 61186, South Korea
[2] Chosun Univ, Dept Math, Gwangju 61452, South Korea
[3] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Weakly eta-Einstein; (k; mu)-space; unit tangent sphere bundle;
D O I
10.1007/s00025-022-01645-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the notion of weakly eta-Einstein structure. Then we prove that a 3-dimensional eta-Einstein almost contact metric manifold is weakly eta-Einstein. Moreover, the generalized Sasakian space forms are weakly eta-Einstein. Furthermore, we obtain the characteristic equation for a non-Sasakian contact (k, mu)-space to be weakly eta-Einstein, which provides many interesting examples. In particular, we determine the base manifold whose unit tangent sphere bundle T1M(c) is weakly eta-Einstein.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] m-quasi-*-Einstein contact metric manifolds
    Kumara, H. A.
    Venkatesha, V.
    Naik, D. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (01) : 61 - 71
  • [22] Generalized Quasi-Einstein Manifolds in Contact Geometry
    Unal, Ivan
    MATHEMATICS, 2020, 8 (09)
  • [23] On the m-quasi-Einstein almost contact manifolds
    Ghosh, Amalendu
    Patra, Dhriti Sundar
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2022, 101 (3-4): : 477 - 490
  • [24] delN-EINSTEIN ALMOST CONTACT METRIC MANIFOLDS
    Galaev, Sergei, V
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2021, (70): : 5 - 15
  • [25] Weyl–Einstein structures on K-contact manifolds
    Paul Gauduchon
    Andrei Moroianu
    Geometriae Dedicata, 2017, 189 : 177 - 184
  • [26] GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS
    Kumara, Huchchappa Aruna
    Venkatesha, Venkatesha
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 639 - 651
  • [27] Einstein-Weyl structures on contact metric manifolds
    Ghosh, Amalendu
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) : 431 - 441
  • [28] ON K-CONTACT eta-EINSTEIN MANIFOLDS
    Kushwaha, Abhishek
    Narain, Dhruwa
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2018, 17 (3-4): : 181 - 190
  • [29] Weakly Einstein critical metrics of the volume functional on compact manifolds with boundary
    Baltazar, H.
    Da Silva, A.
    Oliveira, F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
  • [30] ON LOCALLY CONFORMALLY FLAT WEAKLY-EINSTEIN FOUR-MANIFOLDS
    Haji-Badali, Ali
    Zaeim, Amirhesam
    Atashpeykar, Parvane
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (03): : 73 - 86