Weakly η-Einstein Contact Manifolds

被引:0
|
作者
Cho, Jong Taek [1 ]
Chun, Sun Hyang [2 ]
Euh, Yunhee [3 ]
机构
[1] Chonnam Natl Univ, Dept Math, Gwangju 61186, South Korea
[2] Chosun Univ, Dept Math, Gwangju 61452, South Korea
[3] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Weakly eta-Einstein; (k; mu)-space; unit tangent sphere bundle;
D O I
10.1007/s00025-022-01645-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the notion of weakly eta-Einstein structure. Then we prove that a 3-dimensional eta-Einstein almost contact metric manifold is weakly eta-Einstein. Moreover, the generalized Sasakian space forms are weakly eta-Einstein. Furthermore, we obtain the characteristic equation for a non-Sasakian contact (k, mu)-space to be weakly eta-Einstein, which provides many interesting examples. In particular, we determine the base manifold whose unit tangent sphere bundle T1M(c) is weakly eta-Einstein.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] ON WEAKLY EINSTEIN ALMOST CONTACT MANIFOLDS
    Chen, Xiaomin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (03) : 707 - 719
  • [2] SOME WEAKLY EINSTEIN CONTACT METRIC 3-MANIFOLDS
    Wang, Yaning
    Wang, Pei
    KODAI MATHEMATICAL JOURNAL, 2023, 46 (03) : 324 - 339
  • [3] Three-dimensional homogeneous contact metric manifolds with weakly ?-Einstein structures
    Chun, Sun Hyang
    Euh, Yunhee
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1247 - 1257
  • [4] Einstein manifolds and contact geometry
    Boyer, CP
    Galicki, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) : 2419 - 2430
  • [5] Quaternionic contact Einstein manifolds
    Ivanov, Stefan
    Minchev, Ivan
    Vassilev, Dimiter
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (05) : 1405 - 1432
  • [6] On φ-Einstein Contact Riemannian Manifolds
    Cho, Jong Taek
    Inoguchi, Jun-ichi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (02) : 143 - 167
  • [7] Ricci Solitons on η-Einstein Contact Manifolds
    Chand, De Uday
    Suh, Young Jin
    Majhi, Pradip Kumar
    FILOMAT, 2018, 32 (13) : 4679 - 4687
  • [8] Locally conformally flat weakly-Einstein manifolds
    Eduardo García-Río
    Ali Haji-Badali
    Rodrigo Mariño-Villar
    M. Elena Vázquez-Abal
    Archiv der Mathematik, 2018, 111 : 549 - 559
  • [9] Characterizations of weakly conformally flat and quasi Einstein manifolds
    Sharma, Ramesh
    JOURNAL OF GEOMETRY, 2023, 114 (02)
  • [10] WEAKLY EINSTEIN ALMOST COSYMPLECTIC 3-MANIFOLDS
    Lee, Ji-eun
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2025, 62 (02) : 421 - 442