Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping

被引:26
|
作者
Banks, H. T. [1 ]
Holm, Kathleen
Robbins, Danielle
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
基金
美国国家卫生研究院;
关键词
Parameter estimation; Bootstrapping; Asymptotic standard errors; LEAST-SQUARES; WEIGHTS;
D O I
10.1016/j.mcm.2010.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error, which produce non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1610 / 1625
页数:16
相关论文
共 50 条
  • [41] Inverse uncertainty quantification for imprecise structure based on evidence theory and similar system analysis
    Lixiong Cao
    Jie Liu
    Xianghua Meng
    Yue Zhao
    Zhongbo Yu
    Structural and Multidisciplinary Optimization, 2021, 64 : 2183 - 2198
  • [42] Cox regression was used to compare the measurement error of two tests vs. a gold standard
    Virgili, Gianni
    Angi, Mario
    Molinari, Andrea
    Casotto, Veronica
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2007, 60 (04) : 345 - 349
  • [43] Why Uncertainty Is Essential for Consciousness: Local Prospect Theory vs. Predictive Processing
    Heylighen, Francis
    Beigi, Shima
    ENTROPY, 2025, 27 (02)
  • [44] TOWARD AFFORDABLE UNCERTAINTY QUANTIFICATION FOR INDUSTRIAL PROBLEMS - PART I: THEORY AND VALIDATION
    Ghisu, Tiziano
    Shahpar, Shahrokh
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 2C, 2017,
  • [45] Distribution-free uncertainty quantification for inverse problems: Application to weak lensing mass mapping
    Leterme, H.
    Fadili, J.
    Starck, J. -L
    ASTRONOMY & ASTROPHYSICS, 2025, 694
  • [46] Non-linear model reduction for uncertainty quantification in large-scale inverse problems
    Galbally, D.
    Fidkowski, K.
    Willcox, K.
    Ghattas, O.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (12) : 1581 - 1608
  • [47] Evaluating Embedded Monte Carlo vs. Total Monte Carlo for Nuclear Data Uncertainty Quantification
    Biot, Gregoire
    Rochman, Dimitri
    Ducru, Pablo
    Forget, Benoit
    JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, SNA + MC 2024, 2024, 302
  • [48] Pedestrian Injury Severity vs. Vehicle Impact Speed: Uncertainty Quantification and Calibration to Local Conditions
    Davis, Gary A.
    Cheong, Christopher
    TRANSPORTATION RESEARCH RECORD, 2019, 2673 (11) : 583 - 592
  • [49] STO vs. ICO: A Theory of Token Issues under Moral Hazard and Demand Uncertainty
    Miglo, Anton
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (06)
  • [50] Experienced vs. Described Uncertainty: Do We Need Two Prospect Theory Specifications?
    Abdellaoui, Mohammed
    L'Haridon, Olivier
    Paraschiv, Corina
    MANAGEMENT SCIENCE, 2011, 57 (10) : 1879 - 1895