Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping

被引:26
|
作者
Banks, H. T. [1 ]
Holm, Kathleen
Robbins, Danielle
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
基金
美国国家卫生研究院;
关键词
Parameter estimation; Bootstrapping; Asymptotic standard errors; LEAST-SQUARES; WEIGHTS;
D O I
10.1016/j.mcm.2010.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error, which produce non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1610 / 1625
页数:16
相关论文
共 50 条
  • [31] LP CONVERGENCE OF APPROXIMATE MAPS AND PROBABILITY DENSITIES FOR FORWARD AND INVERSE PROBLEMS IN UNCERTAINTY QUANTIFICATION
    Butler, T.
    Wildey, T.
    Zhang, W.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2022, 12 (04) : 65 - 92
  • [32] Uncertainty Quantification of Microstructures: A Perspective on Forward and Inverse Problems for Mechanical Properties of Aerospace Materials
    Billah, Md Maruf
    Elleithy, Mohamed
    Khan, Waris
    Yildiz, Saltuk
    Eger, Zekeriya Ender
    Liu, Sheng
    Long, Matthew
    Acar, Pinar
    ADVANCED ENGINEERING MATERIALS, 2025, 27 (02)
  • [33] CONVERGENCE OF PROBABILITY DENSITIES USING APPROXIMATE MODELS FOR FORWARD AND INVERSE PROBLEMS IN UNCERTAINTY QUANTIFICATION
    Butler, T.
    Jakeman, J.
    Wildey, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : A3523 - A3548
  • [34] Cycle-Consistency-Based Uncertainty Quantification of Neural Networks in Inverse Imaging Problems
    Huang, Luzhe
    Li, Jianing
    Ding, Xiaofu
    Zhang, Yijie
    Chen, Hanlong
    Ozcan, Aydogan
    Intelligent Computing, 2023, 2
  • [35] Application of Markov Chain Monte Carlo Methods for Uncertainty Quantification in Inverse Transport Problems
    Bledsoe, Keith C.
    Hite, Jason
    Jessee, Matthew A.
    Lefebvre, Jordan P.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (08) : 2210 - 2219
  • [36] A PROBABILISTIC ORACLE INEQUALITY AND QUANTIFICATION OF UNCERTAINTY OF A MODIFIED DISCREPANCY PRINCIPLE FOR STATISTICAL INVERSE PROBLEMS
    Jahn, Tim
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 57 : 35 - 56
  • [37] STATISTICAL GUARANTEES FOR BAYESIAN UNCERTAINTY QUANTIFICATION IN NONLINEAR INVERSE PROBLEMS WITH GAUSSIAN PROCESS PRIORS
    Monard, Francois
    Nickl, Richard
    Paternain, Gabriel P.
    ANNALS OF STATISTICS, 2021, 49 (06): : 3255 - 3298
  • [38] Efficient Krylov subspace methods for uncertainty quantification in large Bayesian linear inverse problems
    Saibaba, Arvind K.
    Chung, Julianne
    Petroske, Katrina
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (05)
  • [39] "SEARCH" VS. "BROWSE": A THEORY OF ERROR GROUNDED IN RADICAL (NOT RATIONAL) IGNORANCE
    Evans, Anthony J.
    Friedman, Jeffrey
    CRITICAL REVIEW, 2011, 23 (1-2) : 73 - 104
  • [40] Inverse uncertainty quantification for imprecise structure based on evidence theory and similar system analysis
    Cao, Lixiong
    Liu, Jie
    Meng, Xianghua
    Zhao, Yue
    Yu, Zhongbo
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (04) : 2183 - 2198