Schur polynomials and biorthogonal random matrix ensembles

被引:11
|
作者
Tierz, Miguel [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis & Engn Nucl, E-08036 Barcelona, Spain
关键词
MODELS;
D O I
10.1063/1.3377965
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of the average of Schur polynomials over a Stieltjes-Wigert ensemble has been carried out by Dolivet and Tierz [J. Math. Phys. 48, 023507 (2007); e-print arXiv:hep-th/0609167], where it was shown that it is equal to quantum dimensions. Using the same approach, we extend the result to the biorthogonal case. We also study, using the Littlewood-Richardson rule, some particular cases of the quantum dimension result. Finally, we show that the notion of Giambelli compatibility of Schur averages, introduced by Borodin et al. [Adv. Appl. Math. 37, 209 (2006); e-print arXiv:math-ph/0505021], also holds in the biorthogonal setting. (C) 2010 American Institute of Physics. [doi:10.1063/1.3377965]
引用
收藏
页数:9
相关论文
共 50 条
  • [41] CORRELATION-FUNCTIONS OF RANDOM MATRIX-ENSEMBLES RELATED TO CLASSICAL ORTHOGONAL POLYNOMIALS .2.
    NAGAO, T
    WADATI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (01) : 78 - 88
  • [42] BIORTHOGONAL POLYNOMIALS SUGGESTED BY LAGUERRE POLYNOMIALS
    KONHAUSER, JD
    PACIFIC JOURNAL OF MATHEMATICS, 1967, 21 (02) : 303 - +
  • [43] ON THE THEORY OF BIORTHOGONAL POLYNOMIALS
    ISERLES, A
    NORSETT, SP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) : 455 - 474
  • [44] DERIVATIVES OF BIORTHOGONAL POLYNOMIALS
    CHAI, WA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 156 - &
  • [45] Noncommutative biorthogonal polynomials
    Sergel, Emily
    ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 99 - 105
  • [46] Certain biorthogonal polynomials
    Angelesco
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1923, 176 : 1531 - 1533
  • [47] Cauchy biorthogonal polynomials
    Bertola, M.
    Gekhtman, M.
    Szmigielski, J.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (04) : 832 - 867
  • [48] DSF chain for biorthogonal polynomials and its application to matrix eigenvalue problems
    Mukaihira, Atsushi
    Tsuboi, Yoshimasa
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 347 : 273 - 295
  • [49] Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations
    Ariznabarreta, Gerardo
    Garcia-Ardila, Juan C.
    Manas, Manuel
    Marcellan, Francisco
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (20)
  • [50] MATRIX JACOBI BIORTHOGONAL POLYNOMIALS VIA RIEMANN-HILBERT PROBLEM
    Branquinho, Amilcar
    Foulquie-Moreno, Ana
    Fradi, Assil
    Manas, Manuel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (01) : 193 - 208