Schur polynomials and biorthogonal random matrix ensembles

被引:11
|
作者
Tierz, Miguel [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis & Engn Nucl, E-08036 Barcelona, Spain
关键词
MODELS;
D O I
10.1063/1.3377965
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of the average of Schur polynomials over a Stieltjes-Wigert ensemble has been carried out by Dolivet and Tierz [J. Math. Phys. 48, 023507 (2007); e-print arXiv:hep-th/0609167], where it was shown that it is equal to quantum dimensions. Using the same approach, we extend the result to the biorthogonal case. We also study, using the Littlewood-Richardson rule, some particular cases of the quantum dimension result. Finally, we show that the notion of Giambelli compatibility of Schur averages, introduced by Borodin et al. [Adv. Appl. Math. 37, 209 (2006); e-print arXiv:math-ph/0505021], also holds in the biorthogonal setting. (C) 2010 American Institute of Physics. [doi:10.1063/1.3377965]
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Superbosonization of Invariant Random Matrix Ensembles
    P. Littelmann
    H. -J. Sommers
    M. R. Zirnbauer
    Communications in Mathematical Physics, 2008, 283
  • [32] Spacing distributions in random matrix ensembles
    Forrester, Peter J.
    RECENT PERSPECTIVES IN RANDOM MATRIX THEORY AND NUMBER THEORY, 2005, 322 : 279 - 307
  • [33] Family of generalized random matrix ensembles
    Bertuola, AC
    Bohigas, O
    Pato, MP
    PHYSICAL REVIEW E, 2004, 70 (06):
  • [34] Duality in random matrix ensembles for all β
    Desrosiers, Patrick
    NUCLEAR PHYSICS B, 2009, 817 (03) : 224 - 251
  • [35] Random Perturbations of Matrix Polynomials
    Pagacz, Patryk
    Wojtylak, Michal
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (01) : 52 - 88
  • [36] Autocorrelation of random matrix polynomials
    Conrey, JB
    Farmer, DW
    Keating, JP
    Rubinstein, MO
    Snaith, NC
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 237 (03) : 365 - 395
  • [37] Random Perturbations of Matrix Polynomials
    Patryk Pagacz
    Michał Wojtylak
    Journal of Theoretical Probability, 2022, 35 : 52 - 88
  • [38] Transitive ensembles of random matrices related to orthogonal polynomials
    Nagao, T
    Forrester, PJ
    NUCLEAR PHYSICS B, 1998, 530 (03) : 742 - 762
  • [39] Autocorrelation of Random Matrix Polynomials
    J.B. Conrey
    D.W. Farmer
    J.P. Keating
    M.O. Rubinstein
    N.C. Snaith
    Communications in Mathematical Physics, 2003, 237 : 365 - 395
  • [40] CORRELATION-FUNCTIONS OF RANDOM MATRIX-ENSEMBLES RELATED TO CLASSICAL ORTHOGONAL POLYNOMIALS .3.
    NAGAO, T
    WADATI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (06) : 1910 - 1918