EXTENDED CONVERGENCE OF THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION

被引:8
|
作者
Bovier, Anton [1 ,3 ]
Hartung, Lisa [2 ]
机构
[1] Univ Bonn, Bonn, Germany
[2] NYU, Courant Inst Math Sci, Dept Math, 251 Mercer St, New York, NY 10012 USA
[3] Rheinische Friedrich Wilhelms Univ, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 03期
关键词
Gaussian processes; branching Brownian motion; extremal processes; cluster processes; multiplicative chaos; GAUSSIAN MULTIPLICATIVE CHAOS;
D O I
10.1214/16-AAP1244
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the results of Arguin et al. [Probab. Theory Related Fields 157 (2013) 535-574] and Aidekon et al. [Probab. Theory Related Fields 157 (2013) 405-451] on the convergence of the extremal process of branching Brownian motion by adding an extra dimension that encodes the "location" of the particle in the underlying Galton-Watson tree. We show that the limit is a cluster point process on R+ x R where each cluster is the atom of a Poisson point process on R+ x R with a random intensity measure Z (dz) x Ce-root 2x dx, where the random measure is explicitly constructed from the derivative martingale. This work is motivated by an analogous result for the Gaussian free field by Biskup and Louidor [Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian free field (2016)].
引用
收藏
页码:1756 / 1777
页数:22
相关论文
共 50 条
  • [31] Supercritical branching Brownian motion with catalytic branching at the origin
    Li Wang
    Guowei Zong
    Science China(Mathematics), 2020, 63 (03) : 595 - 616
  • [32] Clusters in the critical branching Brownian motion
    Ferte, Benoit
    Le Doussal, Pierre
    Rosso, Alberto
    Cao, Xiangyu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (11)
  • [33] THE GENEALOGY OF BRANCHING BROWNIAN MOTION WITH ABSORPTION
    Berestycki, Julien
    Berestycki, Nathanael
    Schweinsberg, Jason
    ANNALS OF PROBABILITY, 2013, 41 (02): : 527 - 618
  • [34] Critical branching Brownian motion with killing
    Lalley, Steven P.
    Zheng, Bowei
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 29
  • [35] Diffusion processes on branching Brownian motion
    Andres, Sebastian
    Hartung, Lisa
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 1377 - 1400
  • [36] The fixed points of branching Brownian motion
    Xinxin Chen
    Christophe Garban
    Atul Shekhar
    Probability Theory and Related Fields, 2023, 185 : 839 - 884
  • [37] THE MAXIMUM OF BRANCHING BROWNIAN MOTION IN Rd
    Kim, Yujin H.
    Lubetzky, Eyal
    Zeitouni, Ofer
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (02): : 1315 - 1368
  • [38] The unscaled paths of branching Brownian motion
    Harris, Simon C.
    Roberts, Matthew I.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (02): : 579 - 608
  • [39] The fixed points of branching Brownian motion
    Chen, Xinxin
    Garban, Christophe
    Shekhar, Atul
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (3-4) : 839 - 884
  • [40] Spatial extent of branching Brownian motion
    Ramola, Kabir
    Majumdar, Satya N.
    Schehr, Gregory
    PHYSICAL REVIEW E, 2015, 91 (04)