EXTENDED CONVERGENCE OF THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION

被引:8
|
作者
Bovier, Anton [1 ,3 ]
Hartung, Lisa [2 ]
机构
[1] Univ Bonn, Bonn, Germany
[2] NYU, Courant Inst Math Sci, Dept Math, 251 Mercer St, New York, NY 10012 USA
[3] Rheinische Friedrich Wilhelms Univ, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 03期
关键词
Gaussian processes; branching Brownian motion; extremal processes; cluster processes; multiplicative chaos; GAUSSIAN MULTIPLICATIVE CHAOS;
D O I
10.1214/16-AAP1244
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the results of Arguin et al. [Probab. Theory Related Fields 157 (2013) 535-574] and Aidekon et al. [Probab. Theory Related Fields 157 (2013) 405-451] on the convergence of the extremal process of branching Brownian motion by adding an extra dimension that encodes the "location" of the particle in the underlying Galton-Watson tree. We show that the limit is a cluster point process on R+ x R where each cluster is the atom of a Poisson point process on R+ x R with a random intensity measure Z (dz) x Ce-root 2x dx, where the random measure is explicitly constructed from the derivative martingale. This work is motivated by an analogous result for the Gaussian free field by Biskup and Louidor [Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian free field (2016)].
引用
收藏
页码:1756 / 1777
页数:22
相关论文
共 50 条