EXTENDED CONVERGENCE OF THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION

被引:8
|
作者
Bovier, Anton [1 ,3 ]
Hartung, Lisa [2 ]
机构
[1] Univ Bonn, Bonn, Germany
[2] NYU, Courant Inst Math Sci, Dept Math, 251 Mercer St, New York, NY 10012 USA
[3] Rheinische Friedrich Wilhelms Univ, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 03期
关键词
Gaussian processes; branching Brownian motion; extremal processes; cluster processes; multiplicative chaos; GAUSSIAN MULTIPLICATIVE CHAOS;
D O I
10.1214/16-AAP1244
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the results of Arguin et al. [Probab. Theory Related Fields 157 (2013) 535-574] and Aidekon et al. [Probab. Theory Related Fields 157 (2013) 405-451] on the convergence of the extremal process of branching Brownian motion by adding an extra dimension that encodes the "location" of the particle in the underlying Galton-Watson tree. We show that the limit is a cluster point process on R+ x R where each cluster is the atom of a Poisson point process on R+ x R with a random intensity measure Z (dz) x Ce-root 2x dx, where the random measure is explicitly constructed from the derivative martingale. This work is motivated by an analogous result for the Gaussian free field by Biskup and Louidor [Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian free field (2016)].
引用
收藏
页码:1756 / 1777
页数:22
相关论文
共 50 条
  • [1] The extremal process of branching Brownian motion
    Louis-Pierre Arguin
    Anton Bovier
    Nicola Kistler
    Probability Theory and Related Fields, 2013, 157 : 535 - 574
  • [2] The extremal process of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 535 - 574
  • [3] An ergodic theorem for the extremal process of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (02): : 557 - 569
  • [4] THE EXTREMAL POINT PROCESS OF BRANCHING BROWNIAN MOTION IN Rd
    Berestycki, Julien
    Kim, Yujin h.
    Lubetzky, Eyal
    Mallein, Bastien
    Zeitouni, Ofer
    ANNALS OF PROBABILITY, 2024, 52 (03): : 955 - 982
  • [5] POISSONIAN STATISTICS IN THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    ANNALS OF APPLIED PROBABILITY, 2012, 22 (04): : 1693 - 1711
  • [6] The extremal process of two-speed branching Brownian motion
    Bovier, Anton
    Hartung, Lisa
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 28
  • [7] Genealogy of Extremal Particles of Branching Brownian Motion
    Arguin, L. -P.
    Bovier, A.
    Kistler, N.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (12) : 1647 - 1676
  • [8] Fisher-KPP equation with small data and the extremal process of branching Brownian motion
    Mytnik, Leonid
    Roquejoffre, Jean-Michel
    Ryzhik, Lenya
    ADVANCES IN MATHEMATICS, 2022, 396
  • [9] The extremal process of super-Brownian motion
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 137 : 1 - 34
  • [10] High points of branching Brownian motion and McKean's Martingale in the Bovier-Hartung extremal process
    Glenz, Constantin
    Kistler, Nicola
    Schmidt, Marius A.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23 : 1 - 12