Multiple-camera defocus imaging of ultracold atomic gases

被引:4
|
作者
Perry, A. R. [1 ,2 ,3 ]
Sugawa, S. [1 ,2 ,4 ,5 ]
Salces-Carcoba, F. [1 ,2 ,6 ]
Yue, Y. [1 ,2 ]
Spielman, I. B. [1 ,2 ]
机构
[1] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Gaithersburg, MD 20899 USA
[3] Honeywell Quantum Solut, 303 S Technol Ct, Broomfield, CO 80021 USA
[4] Natl Inst Nat Sci, Inst Mol Sci, Okazaki, Aichi 4448585, Japan
[5] SOKENDAI Grad Univ Adv Studies, Okazaki, Aichi 4448585, Japan
[6] CALTECH, LIGO Lab, MS 100-36, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
20;
D O I
10.1364/OE.422981
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In cold atom experiments, each image of light refracted and absorbed by an atomic ensemble carries a remarkable amount of information. Numerous imaging techniques including absorption, fluorescence, and phase-contrast are commonly used. Other techniques such as off-resonance defocused imaging (ORDI, [1-4]), where an in-focus image is deconvolved from a defocused image, have been demonstrated but find only niche applications. The ORDI inversion process introduces systematic artifacts because it relies on regularization to account for missing information at some spatial frequencies. In the present work, we extend ORDI to use multiple cameras simultaneously at degrees of defocus, eliminating the need for regularization and its attendant artifacts. We demonstrate this technique by imaging Bose-Einstein condensates, and show that the statistical uncertainties in the measured column density using the multiple-camera off-resonance defocused (McORD) imaging method are competitive with absorption imaging near resonance and phase contrast imaging far from resonance. Experimentally, the McORD method may be incorporated into existing set-ups with minimal additional equipment. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:17029 / 17041
页数:13
相关论文
共 50 条
  • [41] Bose-Einstein condensation in ultracold atomic gases
    Stringari, S
    PHYSICS LETTERS A, 2005, 347 (1-3) : 150 - 156
  • [42] Bose-Einstein condensation of ultracold atomic gases
    Ketterle, W
    Andrews, MR
    Davis, KB
    Durfee, DS
    Kurn, DM
    Mewes, MO
    vanDruten, NJ
    PHYSICA SCRIPTA, 1996, T66 : 31 - 37
  • [43] Feshbach Resonances and Medium Effects in Ultracold Atomic Gases
    G. M. Bruun
    Few-Body Systems, 2009, 45 : 227 - 232
  • [44] ATOMIC DYNAMICS PRECEDING CLUSTERIZATION OF NEUTRAL ULTRACOLD GASES
    COMPAGNO, G
    LOCASCIO, L
    PASSANTE, R
    PERSICO, F
    PHYSICS LETTERS A, 1990, 143 (03) : 147 - 151
  • [45] Feshbach Resonances and Medium Effects in Ultracold Atomic Gases
    Bruun, G. M.
    FEW-BODY SYSTEMS, 2009, 45 (2-4) : 227 - 232
  • [46] Skyrmion-antiskyrmion pairs in ultracold atomic gases
    Price, H. M.
    Cooper, N. R.
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [47] Microelectromagnets for trapping and manipulating ultracold atomic quantum gases
    Fortágh, J
    Ott, H
    Schlotterbeck, G
    Zimmermann, C
    Herzog, B
    Wharam, D
    APPLIED PHYSICS LETTERS, 2002, 81 (06) : 1146 - 1148
  • [48] Fundamental Limits of Feedback Cooling Ultracold Atomic Gases
    Mehdi, Zain
    Haine, Simon A.
    Hope, Joseph J.
    Szigeti, Stuart S.
    PHYSICAL REVIEW LETTERS, 2024, 133 (07)
  • [49] BCS superfluidity in ultracold gases with unequal atomic populations
    Combescot, R
    EUROPHYSICS LETTERS, 2001, 55 (02): : 150 - 156
  • [50] Ultracold atomic quantum gases far from equilibrium
    Gasenzer, Thomas
    Berges, Juergen
    Schmidt, Michael G.
    Seco, Marcos
    NUCLEAR PHYSICS A, 2007, 785 (1-2) : 214C - 217C