Multiple-camera defocus imaging of ultracold atomic gases

被引:4
|
作者
Perry, A. R. [1 ,2 ,3 ]
Sugawa, S. [1 ,2 ,4 ,5 ]
Salces-Carcoba, F. [1 ,2 ,6 ]
Yue, Y. [1 ,2 ]
Spielman, I. B. [1 ,2 ]
机构
[1] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Gaithersburg, MD 20899 USA
[3] Honeywell Quantum Solut, 303 S Technol Ct, Broomfield, CO 80021 USA
[4] Natl Inst Nat Sci, Inst Mol Sci, Okazaki, Aichi 4448585, Japan
[5] SOKENDAI Grad Univ Adv Studies, Okazaki, Aichi 4448585, Japan
[6] CALTECH, LIGO Lab, MS 100-36, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
20;
D O I
10.1364/OE.422981
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In cold atom experiments, each image of light refracted and absorbed by an atomic ensemble carries a remarkable amount of information. Numerous imaging techniques including absorption, fluorescence, and phase-contrast are commonly used. Other techniques such as off-resonance defocused imaging (ORDI, [1-4]), where an in-focus image is deconvolved from a defocused image, have been demonstrated but find only niche applications. The ORDI inversion process introduces systematic artifacts because it relies on regularization to account for missing information at some spatial frequencies. In the present work, we extend ORDI to use multiple cameras simultaneously at degrees of defocus, eliminating the need for regularization and its attendant artifacts. We demonstrate this technique by imaging Bose-Einstein condensates, and show that the statistical uncertainties in the measured column density using the multiple-camera off-resonance defocused (McORD) imaging method are competitive with absorption imaging near resonance and phase contrast imaging far from resonance. Experimentally, the McORD method may be incorporated into existing set-ups with minimal additional equipment. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:17029 / 17041
页数:13
相关论文
共 50 条
  • [21] Pseudogap phenomena in ultracold atomic Fermi gases
    Chen, Qijin
    Wang, Jibiao
    FRONTIERS OF PHYSICS, 2014, 9 (05) : 539 - 570
  • [22] Hybrid synchronization in coupled ultracold atomic gases
    Qiu, Haibo
    Zambrini, Roberta
    Polls, Artur
    Martorell, Joan
    Julia-Diaz, Bruno
    PHYSICAL REVIEW A, 2015, 92 (04)
  • [23] Density correlations in ultracold atomic Fermi gases
    Belzig, W.
    Schroll, C.
    Bruder, C.
    PHYSICAL REVIEW A, 2007, 75 (06):
  • [24] Correlated fermions in nuclei and ultracold atomic gases
    Hen, O.
    Weinstein, L. B.
    Piasetzky, E.
    Miller, G. A.
    Sargsian, M. M.
    Sagi, Y.
    PHYSICAL REVIEW C, 2015, 92 (04):
  • [25] Weak localization of light ultracold atomic gases
    Havey, MD
    Kupriyanov, DV
    PHYSICA SCRIPTA, 2005, 72 (06) : C30 - C32
  • [26] Optical Flux Lattices for Ultracold Atomic Gases
    Cooper, N. R.
    PHYSICAL REVIEW LETTERS, 2011, 106 (17)
  • [27] Pseudogap phenomena in ultracold atomic Fermi gases
    Qijin Chen
    Jibiao Wang
    Frontiers of Physics, 2014, 9 : 539 - 570
  • [28] Stationary light pulses in ultracold atomic gases
    Hansen, Kristian Rymann
    Molmer, Klaus
    PHYSICAL REVIEW A, 2007, 75 (06):
  • [29] Resonances in ultracold dipolar atomic and molecular gases
    Schulz, Bruno
    Sala, Simon
    Saenz, Alejandro
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [30] Nonlinear waves in optics and ultracold atomic gases
    Carpentier, A. V.
    Fernandez-Novoa, J. A.
    Gomez-Cid, M.
    Martinez-Valado, M.
    Michinel, H.
    Novoa, D.
    Salgueiro, J. R.
    Tommasini, D.
    OPTICA PURA Y APLICADA, 2011, 44 (03): : 511 - 517