Discrete-time waveform relaxation Volterra-Runge-Kutta methods: Convergence analysis

被引:7
|
作者
Crisci, MR
Russo, E
Vecchio, A
机构
[1] Univ Salerno, Dip Ing Informat & Mat Appl, Lancusi, SA, Italy
[2] Complesso Monte S Angelo, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[3] CNR, Ist Applicaz Matemat, Naples, Italy
关键词
Volterra integral equations; discrete-time relaxation; Runge-Kutta methods; parallel computing;
D O I
10.1016/S0377-0427(97)00168-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discrete-time relaxation methods based on Volterra-Runge-Kutta methods for solving large system of second-kind Volterra integral equations are proposed. Convergence of the discrete-time iteration process with particular attention to parallel methods is investigated.
引用
收藏
页码:359 / 374
页数:16
相关论文
共 50 条
  • [21] Stability and convergence analysis of stochastic Runge-Kutta and balanced stochastic Runge-Kutta methods for solving stochastic differential equations
    Rahimi, Vaz'he
    Ahmadian, Davood
    Rathinasamy, Anandaraman
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, : 1397 - 1417
  • [22] IMPLICIT RUNGE KUTTA METHODS FOR SECOND KIND VOLTERRA INTEGRAL EQUATIONS
    DEHOOG, F
    WEISS, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (06): : 964 - &
  • [23] Dissipativity of Runge-Kutta methods for Volterra functional differential equations
    Wen, Liping
    Yu, Yuexin
    Li, Shoufu
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (03) : 368 - 381
  • [24] Highly stable multistep Runge–Kutta methods for Volterra integral equations
    Jiao Wen
    Aiguo Xiao
    Chengming Huang
    Computational and Applied Mathematics, 2020, 39
  • [25] Convergence analysis of Runge-Kutta Multiresolution time-domain scheme
    Wang, Yi
    Cao, Qunsheng
    APMC: 2008 ASIA PACIFIC MICROWAVE CONFERENCE (APMC 2008), VOLS 1-5, 2008, : 2583 - 2586
  • [26] The parallel waveform relaxation stochastic Runge–Kutta method for stochastic differential equations
    Xuan Xin
    Qiang Ma
    Xiaohua Ding
    Journal of Applied Mathematics and Computing, 2021, 66 : 439 - 463
  • [27] A STUDY OF B-CONVERGENCE OF RUNGE-KUTTA METHODS
    BURRAGE, K
    HUNDSDORFER, WH
    VERWER, JG
    COMPUTING, 1986, 36 (1-2) : 17 - 34
  • [28] Convergence of Runge-Kutta methods for delay differential equations
    'T Hout, KJI
    BIT NUMERICAL MATHEMATICS, 2001, 41 (02) : 322 - 344
  • [29] AN EXTENSION OF B-CONVERGENCE FOR RUNGE-KUTTA METHODS
    AUZINGER, W
    FRANK, R
    KIRLINGER, G
    APPLIED NUMERICAL MATHEMATICS, 1992, 9 (02) : 91 - 109
  • [30] THE CONVERGENCE OF EXPLICIT RUNGE KUTTA METHODS COMBINED WITH RICHARDSON EXTRAPOLATION
    Farago, Istvan
    Havasi, Agnes
    Zlatev, Zahari
    APPLICATIONS OF MATHEMATICS 2012, 2012, : 99 - 106