AN EXTENSION OF B-CONVERGENCE FOR RUNGE-KUTTA METHODS

被引:10
|
作者
AUZINGER, W
FRANK, R
KIRLINGER, G
机构
[1] Institut für Angewandte und Numerische Mathematik, Technische Universität Wien, A-1040 Wien
关键词
D O I
10.1016/0168-9274(92)90008-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The well-known concepts of B-stability and B-convergence for the analysis of one-step methods applied to stiff initial value problems are based on the notion of one-sided Lipschitz continuity. In a recent paper (Auzinger et al. (1990)) the authors have pointed out that the one-sided Lipschitz constant m must often be expected to be very large (positive and of the order of magnitude of the stiff eigenvalues) despite a (globally) well-conditioned behavior of the underlying problem. As a consequence, the existing B-theory suffers from considerable restrictions; e.g., not even linear systems with time-dependent coefficients are satisfactorily covered. The purpose of the present paper is to fill this gap; for implicit Runge-Kutta methods we extend the B-convergence theory such as to be valid for a class of non-autonomous weakly nonlinear stiff systems; reference to the (potentially large) one-sided Lipschitz constant is avoided. Unique solvability of the system of algebraic equations is shown, and global error bounds are derived.
引用
收藏
页码:91 / 109
页数:19
相关论文
共 50 条
  • [1] A STUDY OF B-CONVERGENCE OF RUNGE-KUTTA METHODS
    BURRAGE, K
    HUNDSDORFER, WH
    VERWER, JG
    COMPUTING, 1986, 36 (1-2) : 17 - 34
  • [2] A NECESSARY CONDITION FOR B-CONVERGENCE OF RUNGE-KUTTA METHODS
    SCHNEID, J
    BIT, 1990, 30 (01): : 166 - 170
  • [3] STUDY OF B-CONVERGENCE OF RUNGE-KUTTA METHODS.
    Burrage, K.
    Hundsdorfer, W.H.
    Verwer, J.G.
    Computing (Vienna/New York), 1986, 36 (1-2): : 17 - 34
  • [5] THE ORDER OF B-CONVERGENCE OF ALGEBRAICALLY STABLE RUNGE-KUTTA METHODS
    BURRAGE, K
    HUNDSDORFER, WH
    BIT, 1987, 27 (01): : 62 - 71
  • [6] Stability and B-convergence properties of multistep Runge-Kutta methods
    Li, SF
    MATHEMATICS OF COMPUTATION, 2000, 69 (232) : 1481 - 1504
  • [7] A STUDY OF B-CONVERGENCE OF LINEARLY IMPLICIT RUNGE-KUTTA METHODS
    STREHMEL, K
    WEINER, R
    DANNEHL, I
    COMPUTING, 1988, 40 (03) : 241 - 253
  • [8] STABILITY AND B-CONVERGENCE OF LINEARLY IMPLICIT RUNGE-KUTTA METHODS
    HUNDSDORFER, WH
    NUMERISCHE MATHEMATIK, 1986, 50 (01) : 83 - 95
  • [9] ON THE RELATION BETWEEN ALGEBRAIC STABILITY AND B-CONVERGENCE FOR RUNGE-KUTTA METHODS
    DEKKER, K
    KRAAIJEVANGER, JFBM
    SCHNEID, J
    NUMERISCHE MATHEMATIK, 1990, 57 (03) : 249 - 262
  • [10] STUDY OF B-CONVERGENCE OF LINEARLY IMPLICIT RUNGE-KUTTA METHODS.
    Strehmel, K.
    Weiner, R.
    Dannehl, I.
    Computing (Vienna/New York), 1988, 40 (03): : 241 - 253