Parametric rigidity of the Hopf bifurcation up to analytic conjugacy

被引:0
|
作者
Arriagada, Waldo [1 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Appl Math & Sci, POB 127788, Abu Dhabi, U Arab Emirates
关键词
Rigidity; moduli space; Poincare domain; Siegel domain; Fatou coordinates; complex dynamics; ISOCHRONOUS FOCI; UNFOLDINGS;
D O I
10.1007/s10998-021-00385-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the time part of the germ of an analytic family of vector fields with a Hopf bifurcation is rigid in the parameter. Time parts are associated with the temporal invariant of the analytic classification. Because the eigenvalues at zero are complex conjugate, time parts usually unfold in the hyperbolic direction, where the singular points are linearizable. We first identify the time part of a generic conformal family and prove that any weak holomorphic conjugacy between two time parts yields a biholomorphism analytic in the parameter. The existence of Fatou coordinates in both the Siegel and in the Poincare domains plays a fundamental role in the proof of this result.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] Hopf Bifurcation, Hopf-Hopf Bifurcation, and Period-Doubling Bifurcation in a Four-Species Food Web
    Zhang, Huayong
    Kang, Ju
    Huang, Tousheng
    Cong, Xuebing
    Ma, Shengnan
    Huang, Hai
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [32] On a degenerate Hopf bifurcation
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (28)
  • [33] THE COMPLEX HOPF BIFURCATION
    赵怀忠
    Chinese Science Bulletin, 1991, (13) : 1135 - 1136
  • [34] Hopf bifurcation on hemispheres
    Abreu, SMC
    Dias, APS
    NONLINEARITY, 2006, 19 (03) : 553 - 574
  • [35] Hopf bifurcation on a sphere
    Sigrist, Rachel
    NONLINEARITY, 2010, 23 (12) : 3199 - 3225
  • [36] On the Hopf bifurcation for flows
    Chaperon, M
    de Medrano, SL
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (11) : 833 - 838
  • [37] Critical diapause portion for oscillations: Parametric trigonometric functions and their applications for Hopf bifurcation analyses
    Zhang, Xue
    Wu, Jianhong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) : 1363 - 1376
  • [38] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua's system
    Li, Junze
    Liu, Yebei
    Wei, Zhouchao
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [39] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system
    Junze Li
    Yebei Liu
    Zhouchao Wei
    Advances in Difference Equations, 2018
  • [40] Hopf type rigidity for thermostats
    Assylbekov, Yernat M.
    Dairbekov, Nurlan S.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 1761 - 1769