Parametric rigidity of the Hopf bifurcation up to analytic conjugacy

被引:0
|
作者
Arriagada, Waldo [1 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Appl Math & Sci, POB 127788, Abu Dhabi, U Arab Emirates
关键词
Rigidity; moduli space; Poincare domain; Siegel domain; Fatou coordinates; complex dynamics; ISOCHRONOUS FOCI; UNFOLDINGS;
D O I
10.1007/s10998-021-00385-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the time part of the germ of an analytic family of vector fields with a Hopf bifurcation is rigid in the parameter. Time parts are associated with the temporal invariant of the analytic classification. Because the eigenvalues at zero are complex conjugate, time parts usually unfold in the hyperbolic direction, where the singular points are linearizable. We first identify the time part of a generic conformal family and prove that any weak holomorphic conjugacy between two time parts yields a biholomorphism analytic in the parameter. The existence of Fatou coordinates in both the Siegel and in the Poincare domains plays a fundamental role in the proof of this result.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Differentiable rigidity and smooth conjugacy
    Jiang, YP
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2005, 30 (02) : 361 - 383
  • [22] Bifurcation rigidity
    Hunt, BR
    Gallas, JAC
    Grebogi, C
    Yorke, JA
    Koçak, H
    PHYSICA D, 1999, 129 (1-2): : 35 - 56
  • [23] Bifurcation rigidity
    Hunt, Brian R.
    Gallas, Jason A.C.
    Grebogi, Celso
    Yorke, James A.
    Kocak, Huseyin
    Physica D: Nonlinear Phenomena, 1999, 129 (01): : 35 - 56
  • [24] Rigidity of the Hopf fibration
    Michael Markellos
    Andreas Savas-Halilaj
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [25] Rigidity of the Hopf fibration
    Markellos, Michael
    Savas-Halilaj, Andreas
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
  • [26] USE OF THE PARAMETRIC REPRESENTATION METHOD IN REVEALING THE ROOT STRUCTURE AND HOPF-BIFURCATION
    FARKAS, H
    SIMON, PL
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1992, 9 (04) : 323 - 339
  • [27] Parametric Excitation and Hopf Bifurcation Analysis of a Time Delayed Nonlinear Feedback Oscillator
    Saha S.
    Gangopadhyay G.
    Kumari S.
    Upadhyay R.K.
    International Journal of Applied and Computational Mathematics, 2020, 6 (6)
  • [28] Experimental study of the effect of parametric noise on the Andronov-Hopf bifurcation in brusselator
    Zakoretskii, K. V.
    Semenov, V. V.
    Vadivasova, T. E.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2016, 61 (10) : 1120 - 1128
  • [29] Conjugacy in the discretized fold bifurcation
    Farkas, G
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (8-9) : 1027 - 1033
  • [30] HOPF-BIFURCATION AND THE HOPF FIBRATION
    FIELD, M
    SWIFT, JW
    NONLINEARITY, 1994, 7 (02) : 385 - 402