Parametric rigidity of the Hopf bifurcation up to analytic conjugacy

被引:0
|
作者
Arriagada, Waldo [1 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Appl Math & Sci, POB 127788, Abu Dhabi, U Arab Emirates
关键词
Rigidity; moduli space; Poincare domain; Siegel domain; Fatou coordinates; complex dynamics; ISOCHRONOUS FOCI; UNFOLDINGS;
D O I
10.1007/s10998-021-00385-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the time part of the germ of an analytic family of vector fields with a Hopf bifurcation is rigid in the parameter. Time parts are associated with the temporal invariant of the analytic classification. Because the eigenvalues at zero are complex conjugate, time parts usually unfold in the hyperbolic direction, where the singular points are linearizable. We first identify the time part of a generic conformal family and prove that any weak holomorphic conjugacy between two time parts yields a biholomorphism analytic in the parameter. The existence of Fatou coordinates in both the Siegel and in the Poincare domains plays a fundamental role in the proof of this result.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Parametric rigidity of the Hopf bifurcation up to analytic conjugacy
    Waldo Arriagada
    Periodica Mathematica Hungarica, 2022, 84 : 1 - 17
  • [2] Parametric rigidness of germs of analytic unfoldings with a Hopf bifurcation
    Arriagada, Waldo
    Fialho, Joao
    PORTUGALIAE MATHEMATICA, 2016, 73 (02) : 153 - 170
  • [3] Parametric resonance of Hopf bifurcation
    Rand, Richard
    Barcilon, Albert
    Morrison, Tina
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 1, Pts A-C, 2005, : 1557 - 1564
  • [4] Parametric resonance of Hopf bifurcation
    Rand, R
    Barcilon, A
    Morrison, T
    NONLINEAR DYNAMICS, 2005, 39 (04) : 411 - 421
  • [5] Parametric Resonance of Hopf Bifurcation
    Richard Rand
    Albert Barcilon
    Tina Morrison
    Nonlinear Dynamics, 2005, 39 : 411 - 421
  • [7] Parametric Controller Design of Hopf Bifurcation System
    Lu, Jinbo
    Hou, Xiaorong
    Luo, Min
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [8] Direct Hopf bifurcation in parametric resonance of hybridized waves
    Elmer, FJ
    PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 179 - 182
  • [9] Parametric resonance and Hopf bifurcation analysis for a MEMS resonator
    van der Avoort, Cas
    van der Hout, Rein
    Hulshof, Joost
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (11) : 913 - 919
  • [10] The stochastic brusselator:: Parametric noise destroys Hopf bifurcation
    Arnold, L
    Bleckert, G
    Schenk-Hoppé, KR
    STOCHASTIC DYNAMICS, 1999, : 71 - 92