Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?

被引:932
|
作者
Besenhard, JO [1 ]
Yang, J [1 ]
Winter, M [1 ]
机构
[1] Graz Univ Technol, Inst Chem Technol Inorgan Mat, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
lithium-ion batteries; lithium-alloy anode; lithium-tin-alloys; ultrasmall particle size; multiphase alloys;
D O I
10.1016/S0378-7753(96)02547-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high packing density of lithium is a significant advantage of lithium insertion into metallic matrices that can be achieved in lithium alloys compared with lithium intercalation into carbonaceous materials. Moreover, the operating voltage of lithium-alloy anodes may be chosen well-above the potential of metallic lithium and the solvent co-intercalation has not been observed at lithium-alloy electrodes, On the other hand, the volume changes related with insertion/removal of lithium into/from the metallic matrices cause pulverization and rapid failure of lithium-alloy anodes. This paper demonstrates the dramatic effect of the morphology of the metallic host matrix on the performance of the lithium-alloy anodes. Two component host matrices with ultrasmall (submicro- or nanoscale) particle size show an impressive cycling performance. This is related with the small absolute changes of the dimensions of the individual particles and also with the fact that in the first charging step the more reactive particles are allowed to expand in a ductile surrounding of still unreacted material. (C) 1997 Elsevier Science S.A.
引用
收藏
页码:87 / 90
页数:4
相关论文
共 50 条
  • [31] Hydrocolloids as binders for graphite anodes of lithium-ion batteries
    Cuesta, Nuria
    Ramos, Alberto
    Camean, Ignacio
    Antuna, Cristina
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2015, 155 : 140 - 147
  • [32] Composite anodes for lithium-ion batteries: status and trends
    Mauger, Alain
    Xie, Haiming
    Julien, Christian M.
    AIMS MATERIALS SCIENCE, 2016, 3 (03) : 1054 - 1106
  • [33] SILICON ANODES WILL GIVE LITHIUM-ION BATTERIES A BOOST
    Schneider, David
    IEEE SPECTRUM, 2019, 56 (01) : 48 - 49
  • [34] Neutron radiation on tin anodes of lithium-ion batteries
    Li, Ling
    Wu, Hui
    Ma, Zengsheng
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2018, 173 (11-12): : 1068 - 1074
  • [35] Coke vs graphite as anodes for lithium-ion batteries
    Shi, H
    JOURNAL OF POWER SOURCES, 1998, 75 (01) : 64 - 72
  • [36] Spruce Hard Carbon Anodes for Lithium-Ion Batteries
    Drews, Mathias
    Buettner, Jan
    Bauer, Manuel
    Ahmed, Junaid
    Sahu, Rajib
    Scheu, Christina
    Vierrath, Severin
    Fischer, Anna
    Biro, Daniel
    CHEMELECTROCHEM, 2021, 8 (24) : 4750 - 4761
  • [37] Alternative anodes for low temperature lithium-ion batteries
    Collins, Gearoid A.
    Geaney, Hugh
    Ryan, Kevin M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (25) : 14172 - 14213
  • [38] SiOC/CNTs composites as anodes for lithium-ion batteries
    Hu, Changhao
    Cen, Zhuoqi
    Quan, Yiling
    Zhang, Qinghua
    Jian, Xigao
    Liang, Kun
    Song, Yujie
    Xu, Jian
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [39] Dendrite formation in silicon anodes of lithium-ion batteries
    Selis, Luis A.
    Seminario, Jorge M.
    RSC ADVANCES, 2018, 8 (10) : 5255 - 5267
  • [40] Ab initio calculations of lithium titanates related to anodes of lithium-ion batteries
    Amaya-Roncancio, Sebastian
    Reinaudi, Luis
    Chauque, Susana
    Oliva, Fabiana Y.
    Camara, Osvaldo R.
    Leiva, Ezequiel P. M.
    Cecilia Gimenez, M.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2020, 141