Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?

被引:932
|
作者
Besenhard, JO [1 ]
Yang, J [1 ]
Winter, M [1 ]
机构
[1] Graz Univ Technol, Inst Chem Technol Inorgan Mat, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
lithium-ion batteries; lithium-alloy anode; lithium-tin-alloys; ultrasmall particle size; multiphase alloys;
D O I
10.1016/S0378-7753(96)02547-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high packing density of lithium is a significant advantage of lithium insertion into metallic matrices that can be achieved in lithium alloys compared with lithium intercalation into carbonaceous materials. Moreover, the operating voltage of lithium-alloy anodes may be chosen well-above the potential of metallic lithium and the solvent co-intercalation has not been observed at lithium-alloy electrodes, On the other hand, the volume changes related with insertion/removal of lithium into/from the metallic matrices cause pulverization and rapid failure of lithium-alloy anodes. This paper demonstrates the dramatic effect of the morphology of the metallic host matrix on the performance of the lithium-alloy anodes. Two component host matrices with ultrasmall (submicro- or nanoscale) particle size show an impressive cycling performance. This is related with the small absolute changes of the dimensions of the individual particles and also with the fact that in the first charging step the more reactive particles are allowed to expand in a ductile surrounding of still unreacted material. (C) 1997 Elsevier Science S.A.
引用
收藏
页码:87 / 90
页数:4
相关论文
共 50 条
  • [21] SnSb-TiC-C nanocomposite alloy anodes for lithium-ion batteries
    Leibowitz, Joshua
    Allcorn, Eric
    Manthiram, Arumugam
    JOURNAL OF POWER SOURCES, 2015, 279 : 549 - 554
  • [22] Cycling-Induced Microstructural Changes in Alloy Anodes for Lithium-Ion Batteries
    Adams, Jacob N.
    Nelson, George J.
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2021, 18 (04)
  • [23] Microstructure Engineered Silicon Alloy Anodes for Lithium-Ion Batteries: Advances and Challenges
    Zheng, Penglun
    Sun, Jichang
    Liu, Huaiyin
    Wang, Rui
    Liu, Chuanbang
    Zhao, Yang
    Li, Junwei
    Zheng, Yun
    Rui, Xianhong
    BATTERIES & SUPERCAPS, 2023, 6 (01)
  • [24] Sb-AlxCy-C Nanocomposite Alloy Anodes for Lithium-Ion Batteries
    Nguyen Thanh Hung
    Park, Sung-Hoon
    Bae, Joonwon
    Yoon, Young Soo
    Kim, Ji Hyeon
    Son, Hyung Bin
    Lee, Daeho
    Kim, Il Tae
    Hur, Jaehyun
    ELECTROCHIMICA ACTA, 2016, 210 : 567 - 574
  • [25] Entropy Stabilized Medium High Entropy Alloy Anodes for Lithium-ion Batteries
    Alvi, Sajid
    Black, Ashley P.
    Jozami, Ignacio
    Escudero, Carlos
    Akhtar, Farid
    Johansson, Patrik
    BATTERIES & SUPERCAPS, 2024, 7 (05)
  • [26] Boosting Lithium-Ion Transport Kinetics by Increasing the Local Lithium-Ion Concentration Gradient in Composite Anodes of Lithium-Ion Batteries
    Wu, Weiwei
    Sun, Zhonggui
    He, Qiang
    Shi, Xingwang
    Ge, Xuhui
    Cheng, Jipeng
    Wang, Jun
    Zhang, Zhiya
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (12) : 14752 - 14758
  • [27] Electrochemical Properties of Advanced Anodes for Lithium-ion Batteries Based on Carboxymethylcellulose as binder
    Khomenko, Volodymyr
    Barsukov, Viacheslav
    Senyk, Ilona
    BALTIC POLYMER SYMPOSIUM, 2013, 559 : 49 - 55
  • [28] Silicene Anodes for Lithium-Ion Batteries on Metal Substrates
    Galashev, Alexander Y.
    Ivanichkina, Ksenia A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (05)
  • [29] Hierarchical structuring of cathodes and anodes for lithium-ion batteries
    Strassburger, N.
    Zhu, P.
    Pfleging, W.
    LASER PLUS PHOTONICS FOR ADVANCED MANUFACTURING, 2024, 13005
  • [30] Evaluation of graphite materials as anodes for lithium-ion batteries
    Cao, F
    Barsukov, IV
    Bang, HJ
    Zaleski, P
    Prakash, J
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (10) : 3579 - 3583