Parallax: Visualizing and Understanding the Semantics of Embedding Spaces via Algebraic Formulae

被引:0
|
作者
Molino, Piero [1 ]
Wang, Yang [2 ]
Zhang, Jiawei [3 ]
机构
[1] Uber AI Labs, San Francisco, CA 94107 USA
[2] Uber Technol Inc, San Francisco, CA USA
[3] Facebook, Menlo Pk, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Embeddings are a fundamental component of many modern machine learning and natural language processing models. Understanding them and visualizing them is essential for gathering insights about the information they capture and the behavior of the models. In this paper, we introduce Parallax(1), a tool explicitly designed for this task. Parallax allows the user to use both state-of-the-art embedding analysis methods (PCA and t-SNE) and a simple yet effective task-oriented approach where users can explicitly define the axes of the projection through algebraic formulae. In this approach, embeddings are projected into a semantically meaningful subspace, which enhances interpretability and allows for more fine-grained analysis. We demonstrate(2) the power of the tool and the proposed methodology through a series of case studies and a user study.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 50 条
  • [41] Cross-Architecture Binary Semantics Understanding via Similar Code Comparison
    Hu, Yikun
    Zhang, Yuanyuan
    Li, Juanru
    Gu, Dawu
    2016 IEEE 23RD INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), VOL 1, 2016, : 57 - 67
  • [42] Towards rigorous understanding of neural networks via semantics-preserving transformations
    Schlueter, Maximilian
    Nolte, Gerrit
    Murtovi, Alnis
    Steffen, Bernhard
    INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2023, 25 (03) : 301 - 327
  • [43] Visualizing large-scale high-dimensional data via hierarchical embedding of KNN graphs
    Zhu, Haiyang
    Zhu, Minfeng
    Feng, Yingchaojie
    Cai, Deng
    Hu, Yuanzhe
    Wu, Shilong
    Wu, Xiangyang
    Chen, Wei
    VISUAL INFORMATICS, 2021, 5 (02) : 51 - 59
  • [44] Towards rigorous understanding of neural networks via semantics-preserving transformations
    Maximilian Schlüter
    Gerrit Nolte
    Alnis Murtovi
    Bernhard Steffen
    International Journal on Software Tools for Technology Transfer, 2023, 25 : 301 - 327
  • [45] Understanding X-let sparsity via decomposition spaces
    Voigtlaender, Felix
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 523 - 527
  • [47] Geometric Characterizations of Embedding Theorems: For Sobolev, Besov, and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type—via Orthonormal Wavelets
    Yanchang Han
    Yongsheng Han
    Ziyi He
    Ji Li
    Cristina Pereyra
    The Journal of Geometric Analysis, 2021, 31 : 8947 - 8978
  • [48] Did You Enjoy the Ride: Understanding Passenger Experience via Heterogeneous Network Embedding
    Yang, Carl
    Zhang, Chao
    Chen, Xuewen
    Ye, Jieping
    Han, Jiawei
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 1392 - 1403
  • [49] Bourgain–Brezis–Mironescu–Maz’ya–Shaposhnikova limit formulae for fractional Sobolev spaces via interpolation and extrapolation
    Oscar Domínguez
    Mario Milman
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [50] Visualizing and Exploring the Dynamics of Optimization via Circular Swap Mutations in Constraint-Based Problem Spaces
    Ipe, Navin K.
    Kulkarni, Raghavendra V.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 113 - 131