Bourgain–Brezis–Mironescu–Maz’ya–Shaposhnikova limit formulae for fractional Sobolev spaces via interpolation and extrapolation

被引:0
|
作者
Oscar Domínguez
Mario Milman
机构
[1] Universidad Complutense de Madrid,Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Matemáticas
[2] Instituto Argentino de Matematica,undefined
关键词
Primary: 26A33; 46B20; 46B70; Secondary: 42B05; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
The real interpolation spaces between Lp(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}({{\mathbb {R}}}^{n})$$\end{document} and H˙t,p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{H}}^{t,p}({{\mathbb {R}}}^{n})$$\end{document} (resp. Ht,p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{t,p}({{\mathbb {R}}}^{n})$$\end{document}),   t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t>0,$$\end{document} are characterized in terms of fractional moduli of smoothness, and the underlying seminorms are shown to be “the correct” fractional generalization of the classical Gagliardo seminorms. This is confirmed by the fact that, using the new spaces combined with interpolation and extrapolation methods, we are able to extend the Bourgain–Brezis–Mironescu–Maz’ya–Shaposhnikova limit formulae, as well as the Bourgain–Brezis–Mironescu convergence theorem, to fractional Sobolev spaces. On the other hand, we disprove a conjecture of Brazke et al. (Bourgain–Brezis–Mironescu convergence via Triebel–Lizorkin spaces. https://arxiv.org/abs/2109.04159) suggesting fractional convergence results given in terms of classical Gagliardo seminorms. We also solve a problem proposed in Brazke et al. (Bourgain–Brezis–Mironescu convergence via Triebel–Lizorkin spaces. https://arxiv.org/abs/2109.04159) concerning sharp forms of the fractional Sobolev embedding.
引用
收藏
相关论文
共 16 条